Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 May 11;19(9):2489–2494. doi: 10.1093/nar/19.9.2489

The computer simulation of RNA folding involving pseudoknot formation.

A P Gultyaev 1
PMCID: PMC329462  PMID: 1710358

Abstract

The algorithm and the program for the prediction of RNA secondary structure with pseudoknot formation have been proposed. The algorithm simulates stepwise folding by generating random structures using Monte Carlo method, followed by the selection of helices to final structure on the basis of both their probabilities of occurrence in a random structure and free energy parameters. The program versions have been tested on ribosomal RNA structures and on RNAs with pseudoknots evidenced by experimental data. It is shown that the simulation of folding during RNA synthesis improves the results. The introduction of pseudoknot formation permits to predict the pseudoknotted structures and to improve the prediction of long-range interactions. The computer program is rather fast and allows to predict the structures for long RNAs without using large memory volumes in usual personal computer.

Full text

PDF
2490

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., van den Berg M., van Batenburg E., Pleij C. Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res. 1990 May 25;18(10):3035–3044. doi: 10.1093/nar/18.10.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley I., Digard P., Inglis S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke B. E., Brown A. L., Currey K. M., Newton S. E., Rowlands D. J., Carroll A. R. Potential secondary and tertiary structure in the genomic RNA of foot and mouth disease virus. Nucleic Acids Res. 1987 Sep 11;15(17):7067–7079. doi: 10.1093/nar/15.17.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deckman I. C., Draper D. E. S4-alpha mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4. J Mol Biol. 1987 Jul 20;196(2):323–332. doi: 10.1016/0022-2836(87)90693-0. [DOI] [PubMed] [Google Scholar]
  5. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gultyaev A. P., Shestopalov B. V. Structural basis for autogenous regulation of Xenopus laevis ribosomal protein L1 synthesis at the splicing level. FEBS Lett. 1988 May 9;232(1):9–11. doi: 10.1016/0014-5793(88)80376-4. [DOI] [PubMed] [Google Scholar]
  7. Göringer H. U., Wagner R. Does 5S RNA from E. coli have a pseudoknotted structure? Nucleic Acids Res. 1986 Sep 25;14(18):7473–7485. doi: 10.1093/nar/14.18.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobson A. B., Good L., Simonetti J., Zuker M. Some simple computational methods to improve the folding of large RNAs. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):45–52. doi: 10.1093/nar/12.1part1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacquier A., Michel F. Multiple exon-binding sites in class II self-splicing introns. Cell. 1987 Jul 3;50(1):17–29. doi: 10.1016/0092-8674(87)90658-1. [DOI] [PubMed] [Google Scholar]
  10. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jordan B. R. Computer generation of pairing schemes for RNA molecules. J Theor Biol. 1972 Feb;34(2):363–378. doi: 10.1016/0022-5193(72)90168-3. [DOI] [PubMed] [Google Scholar]
  12. Le S. Y., Chen J. H., Braun M. J., Gonda M. A., Maizel J. V. Stability of RNA stem-loop structure and distribution of non-random structure in the human immunodeficiency virus (HIV-I). Nucleic Acids Res. 1988 Jun 10;16(11):5153–5168. doi: 10.1093/nar/16.11.5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martinez H. M. An RNA folding rule. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):323–334. doi: 10.1093/nar/12.1part1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mironov A. A., D'iakonova L. P., Kister A. E. Predskazanie ansamblei vtorichnykh struktur RNK. Kineticheskii analiz samoorganizatsii. Mol Biol (Mosk) 1984 Nov-Dec;18(6):1686–1694. [PubMed] [Google Scholar]
  15. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  16. Nussinov R., Jacobson A. B. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6309–6313. doi: 10.1073/pnas.77.11.6309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nussinov R., Pieczenik G. Structural and combinatorial constraints on base pairing in large nucleotide sequences. J Theor Biol. 1984 Feb 7;106(3):245–259. doi: 10.1016/0022-5193(84)90029-8. [DOI] [PubMed] [Google Scholar]
  18. Nussinov R., Tinoco I., Jr, Jacobson A. B. Secondary structure model for the complete simian virus 50 late precursor mRNA. Nucleic Acids Res. 1982 Jan 11;10(1):351–363. doi: 10.1093/nar/10.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pleij C. W., Rietveld K., Bosch L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 1985 Mar 11;13(5):1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Puglisi J. D., Wyatt J. R., Tinoco I., Jr A pseudoknotted RNA oligonucleotide. Nature. 1988 Jan 21;331(6153):283–286. doi: 10.1038/331283a0. [DOI] [PubMed] [Google Scholar]
  21. Solovyov V. V., Zharkikh A. A., Kolchanov N. A., Ratner V. A. The template RNAs of RNA polymerases can have compact secondary structure, formed by long double helices with partial violations of the complementarity. FEBS Lett. 1984 Jan 2;165(1):72–78. doi: 10.1016/0014-5793(84)80017-4. [DOI] [PubMed] [Google Scholar]
  22. Stern S., Powers T., Changchien L. M., Noller H. F. RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science. 1989 May 19;244(4906):783–790. doi: 10.1126/science.2658053. [DOI] [PubMed] [Google Scholar]
  23. Tang C. K., Draper D. E. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell. 1989 May 19;57(4):531–536. doi: 10.1016/0092-8674(89)90123-2. [DOI] [PubMed] [Google Scholar]
  24. Wada A., Suyama A. Local stability of DNA and RNA secondary structure and its relation to biological functions. Prog Biophys Mol Biol. 1986;47(2):113–157. doi: 10.1016/0079-6107(86)90012-x. [DOI] [PubMed] [Google Scholar]
  25. Woese C. R., Gutell R., Gupta R., Noller H. F. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 1983 Dec;47(4):621–669. doi: 10.1128/mr.47.4.621-669.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
  27. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Belkum A., Cornelissen B., Linthorst H., Bol J., Pley C., Bosch L. tRNA-like properties of tobacco rattle virus RNA. Nucleic Acids Res. 1987 Apr 10;15(7):2837–2850. doi: 10.1093/nar/15.7.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES