Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Sep;84(3):817–823. doi: 10.1172/JCI114241

Coregulation of calcium channels and beta-adrenergic receptors in cultured chick embryo ventricular cells.

J D Marsh 1
PMCID: PMC329724  PMID: 2569480

Abstract

To examine mechanisms whereby the abundance of functional Ca channels may be regulated in excitable tissue, Ca channel number was estimated by binding of the dihydropyridine (DHP) antagonist 3H (+)PN200-110 to monolayers of intact myocytes from chick embryo ventricle. Beta adrenergic receptor properties were studied in cultured myocytes using [3H]CGP12177, an antagonist ligand. Physiological correlates for alterations in DHP binding site number included 45Ca uptake and contractile response to (+)BAYk 8644, a specific L-type Ca channel activator. All binding and physiological determinations were performed in similar intact cell preparations under identical conditions. 4-h exposure to 1 microM isoproterenol reduced cell surface beta-adrenergic receptor number from 44 +/- 3 to 17 +/- 2 fmol/mg (P less than 0.05); DHP binding sites declined in number from 113 +/- 25 to 73 +/- 30 fmol/mg (P less than 0.03). When protein kinase A was activated by a non-receptor-dependent mechanism, DHP binding declined similarly to 68% of control. Exposure to diltiazem, a Ca channel antagonist, for 18-24 h had no effect on number of DHP binding sites. After 4-h isoproterenol exposure, 45Ca uptake stimulated by BAYk 8644 declined from 3.3 +/- 0.2 nmol/mg to 2.9 +/- 0.3 nmol/mg (P less than 0.01) and BAYk 8644-stimulated increase in amplitude of contraction declined from 168 +/- 7 to 134 +/- 11% (P = 0.02). Thus, elevation of [cAMP] in myocytes is associated with a time-dependent decline in Ca channel abundance as estimated by DHP binding and a decline in physiological responses that are in part dependent on abundance of Ca channels. Binding of a directly acting Ca channel antagonist for 18-24 h does not modulate the number of DHP binding sites.

Full text

PDF
819

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett J. V., Haigh L. S., Marsh J. D., Galper J. B. Effects of low density lipoproteins and mevinolin on sympathetic responsiveness in cultured chick atrial cells. Regulation of beta-adrenergic receptors and alpha s. J Biol Chem. 1989 Jun 25;264(18):10779–10786. [PubMed] [Google Scholar]
  2. Barry W. H., Pitzen R., Protas K., Harrison D. C. Inotropic effects of different calcium ion concentration on the embryonic chick ventricle. Comparison of single cultured cells and intact muscle strips. Circ Res. 1975 Jun;36(6):727–734. doi: 10.1161/01.res.36.6.727. [DOI] [PubMed] [Google Scholar]
  3. Barry W. H., Smith T. W. Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J Physiol. 1982 Apr;325:243–260. doi: 10.1113/jphysiol.1982.sp014148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biedert S., Barry W. H., Smith T. W. Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J Gen Physiol. 1979 Oct;74(4):479–494. doi: 10.1085/jgp.74.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caffrey J. M., Brown A. M., Schneider M. D. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science. 1987 May 1;236(4801):570–573. doi: 10.1126/science.2437651. [DOI] [PubMed] [Google Scholar]
  6. Clusin W. T., Hamilton W. E., Nelson D. V. The mechanical activity of chick embryonic myocardial cell aggregates. J Physiol. 1981 Nov;320:149–174. doi: 10.1113/jphysiol.1981.sp013941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dohlman H. G., Bouvier M., Benovic J. L., Caron M. G., Lefkowitz R. J. The multiple membrane spanning topography of the beta 2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J Biol Chem. 1987 Oct 15;262(29):14282–14288. [PubMed] [Google Scholar]
  8. Green F. J., Farmer B. B., Wiseman G. L., Jose M. J., Watanabe A. M. Effect of membrane depolarization on binding of [3H]nitrendipine to rat cardiac myocytes. Circ Res. 1985 Apr;56(4):576–585. doi: 10.1161/01.res.56.4.576. [DOI] [PubMed] [Google Scholar]
  9. Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
  10. Hescheler J., Kameyama M., Trautwein W., Mieskes G., Söling H. D. Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem. 1987 Jun 1;165(2):261–266. doi: 10.1111/j.1432-1033.1987.tb11436.x. [DOI] [PubMed] [Google Scholar]
  11. Karliner J. S., Simpson P. C., Honbo N., Woloszyn W. Mechanisms and time course of beta 1 adrenoceptor desensitisation in mammalian cardiac myocytes. Cardiovasc Res. 1986 Mar;20(3):221–228. doi: 10.1093/cvr/20.3.221. [DOI] [PubMed] [Google Scholar]
  12. Kim D., Smith T. W., Marsh J. D. Effect of thyroid hormone on slow calcium channel function in cultured chick ventricular cells. J Clin Invest. 1987 Jul;80(1):88–94. doi: 10.1172/JCI113068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laurent S., Kim D., Smith T. W., Marsh J. D. Inotropic effect, binding properties, and calcium flux effects of the calcium channel agonist CGP 28392 in intact cultured embryonic chick ventricular cells. Circ Res. 1985 May;56(5):676–682. doi: 10.1161/01.res.56.5.676. [DOI] [PubMed] [Google Scholar]
  14. Lee R. T., Smith T. W., Marsh J. D. Evidence for distinct calcium channel agonist and antagonist binding sites in intact cultured embryonic chick ventricular cells. Circ Res. 1987 May;60(5):683–691. doi: 10.1161/01.res.60.5.683. [DOI] [PubMed] [Google Scholar]
  15. Limas C. J., Limas C. Rapid recovery of cardiac beta-adrenergic receptors after isoproterenol-induced "down"-regulation. Circ Res. 1984 Oct;55(4):524–531. doi: 10.1161/01.res.55.4.524. [DOI] [PubMed] [Google Scholar]
  16. Linden J., Patel A., Spanier A. M., Weglicki W. B. Rapid agonist-induced decrease of 125I-pindolol binding to beta-adrenergic receptors. Relationship to desensitization of cyclic AMP accumulation in intact heart cells. J Biol Chem. 1984 Dec 25;259(24):15115–15122. [PubMed] [Google Scholar]
  17. Marsh J. D., Barry W. H., Smith T. W. Desensitization to the inotropic effect of isoproterenol in cultured ventricular cells. J Pharmacol Exp Ther. 1982 Oct;223(1):60–67. [PubMed] [Google Scholar]
  18. Marsh J. D., Loh E., Lachance D., Barry W. H., Smith T. W. Relationship of binding of a calcium channel blocker to inhibition of contraction in intact cultured embryonic chick ventricular cells. Circ Res. 1983 Oct;53(4):539–543. doi: 10.1161/01.res.53.4.539. [DOI] [PubMed] [Google Scholar]
  19. Marsh J. D., Roberts D. J. Adenylate cyclase regulation in intact cultured myocardial cells. Am J Physiol. 1987 Jan;252(1 Pt 1):C47–C54. doi: 10.1152/ajpcell.1987.252.1.C47. [DOI] [PubMed] [Google Scholar]
  20. Navarro J. Modulation of [3H]dihydropyridine receptors by activation of protein kinase C in chick muscle cells. J Biol Chem. 1987 Apr 5;262(10):4649–4652. [PubMed] [Google Scholar]
  21. Nirenberg M., Wilson S., Higashida H., Rotter A., Krueger K., Busis N., Ray R., Kenimer J. G., Adler M. Modulation of synapse formation by cyclic adenosine monophosphate. Science. 1983 Nov 18;222(4625):794–799. doi: 10.1126/science.6314503. [DOI] [PubMed] [Google Scholar]
  22. Reuter H., Kokubun S., Prod'hom B. Properties and modulation of cardiac calcium channels. J Exp Biol. 1986 Sep;124:191–201. doi: 10.1242/jeb.124.1.191. [DOI] [PubMed] [Google Scholar]
  23. Schmid A., Renaud J. F., Lazdunski M. Short term and long term effects of beta-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J Biol Chem. 1985 Oct 25;260(24):13041–13046. [PubMed] [Google Scholar]
  24. Sibley D. R., Strasser R. H., Benovic J. L., Daniel K., Lefkowitz R. J. Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9408–9412. doi: 10.1073/pnas.83.24.9408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Staehelin M., Hertel C. [3H]CGP-12177, a beta-adrenergic ligand suitable for measuring cell surface receptors. J Recept Res. 1983;3(1-2):35–43. doi: 10.3109/10799898309041921. [DOI] [PubMed] [Google Scholar]
  26. Strasser R. H., Benovic J. L., Caron M. G., Lefkowitz R. J. Beta-agonist- and prostaglandin E1-induced translocation of the beta-adrenergic receptor kinase: evidence that the kinase may act on multiple adenylate cyclase-coupled receptors. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6362–6366. doi: 10.1073/pnas.83.17.6362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
  28. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]
  29. Yatani A., Codina J., Imoto Y., Reeves J. P., Birnbaumer L., Brown A. M. A G protein directly regulates mammalian cardiac calcium channels. Science. 1987 Nov 27;238(4831):1288–1292. doi: 10.1126/science.2446390. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES