Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2012 Jun 5;367(1595):1589–1597. doi: 10.1098/rstb.2011.0244

Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how

Douglas B Kell 1,2,*
PMCID: PMC3321694  PMID: 22527402

Abstract

The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water.

Keywords: soil, carbon, sequestration, systems biology, breeding

1. Introduction: why sequester atmospheric CO2?

It is well known that atmospheric CO2 is increasing at some 2 ppmv p.a., mainly as a result of human activities such as fossil fuel combustion, and that this has taken its values from ca 280 ppmv at ‘pre-industrial’ levels to more like 390 ppmv today [1]. To avoid the predicted increases in global temperature contingent upon ‘greenhouse gas’ effects we need not only to lower the emissions but preferably to find means of sequestering atmospheric CO2 over extended periods. Similar arguments apply to all other greenhouse gases [2], such as CH4 and N2O.

On geological time-scales, atmospheric CO2 levels were much (possibly 10-fold) greater than they are now [3], and the main means by which sequestration of atmospheric carbon was achieved, especially in the Devonian, Carboniferous and Cretaceous eras, was through plant photosynthesis. The question obviously arises as to whether we can drive such improved sequestration in the modern era in useful quantities and at useful rates. I believe that we can [4]. An overview of the article is given as a ‘mind map’ [5] in figure 1.

Figure 1.

Figure 1.

A ‘mind map’ [5] setting out the contents of the paper. To read it start at ‘12 o'clock’ and read clockwise.

2. Dynamics of CO2 exchange between terrestrial ecosystems and the atmosphere

The first point to make is that terrestrial ecosystems including soils globally hold at least twice as much carbon (ca 1500–2500 Pg/Gt) as does the atmosphere (750 Pg) [6,7], so an overall increase in soil carbon by 10% implies (crudely) a decrease in (or more accurately a saving of an increase in) atmospheric carbon of at least 20%. (Note that at 750 Pg ≈375 ppmv atmospheric CO2, 2 Pg of C removed from or not added to the atmosphere ≈1 ppmv removed or not added.) Overall fluxes to and from the soil are substantial, probably 60 Pg yr−1 or more, albeit low in comparison to these pools [79]. This means that determining even the net direction of CO2 transfer requires comparatively high-precision measurements [10]. Nevertheless, reasonably accurate estimates of net fluxes of ±1–2 t (ha yr)−1 are easily attainable. Present agricultural ecosystems are rather depleted of soil carbon [1114], and the existing ‘sink’ in such soils could certainly accommodate 50 t ha−1. Given that world cropland and grassland each account for some 2300 Mha [15], the scope for increased sequestration in terrestrial ecosystems is clearly substantial [4], and—as with the exploitation of solar energy [16]—something we are very far from saturating.

It also needs to be recognised that there has been a certain dichotomy between most studies, that have been designed to analyse natural ecosystems—‘what is there’—and what could be done if we chose to breed and deploy suitable plants whether as food or non-food crops—‘what might be’ [4]. I shall tend to use the former as an existence proof of possibilities, while recognising that it is the latter that is the real goal.

Finally, here I note that the atmosphere is also in contact with the oceans [17] (and in pseudo- but not full equilibrium with them; if it were, the annual oscillations would tend to be much more heavily damped), and that the oceans sequester some 38 000 Pg C or 50 times that in the atmosphere [7,18]. This means that any eventual tendency to decrease atmospheric CO2 effected by C sequestration in soil can be balanced by degassing of CO2 from the oceans, so that what we are talking about here is stabilising values at their present levels rather than reducing them substantially (I thank Gideon Henderson for a useful discussion on this point). The liming of oceans may also offer some important opportunities there [19] (and see http://www.cquestrate.com/).

3. The main pathways of carbon sequestration and release in soils

There are four main steps in a systems biology approach to understanding complex networks [20,21]. Steps 1 and 2 are essentially qualitative, and define the steps and the interacting partners (sources and sinks for each step), and whether such interactions are direct and stoichiometric or indirect and ‘regulatory’. Each ‘step’ may of course consist of multiple substeps. The third and fourth stages provide any known (or ‘generalised’ [22]) kinetic rate equations and the values of their parameters. Interoperable standards exist for describing such networks in XML [23], as well as for their graphical representation [24]. Armed with such information, it is then possible to develop a stochastic or ordinary differential equation model of the entire system of interest, whether based on ‘lumped’ compartments or involving explicit spatial differentiation.

In the spirit of step 1, figure 2 illustrates in general terms (for a more detailed version, see [25]) the main processes in soil operating to capture, sequester, transform and (in time) re-release atmospheric CO2. The main initial step is necessarily photosynthetic CO2 capture, followed by its translocation below ground into plant roots [26]. Partly under genetic, nutritional and hormonal control, roots can extend to varying depths, and thereby deposit carbon as root biomass. Probably more important is the fact that roots exude all kinds of carbon-containing components into the rhizosphere [27], a complex and imperfectly characterised zone containing numerous microbes (including mycorrhiza [28,29]). From here, further transformations [30] can produce a variety of carbon-containing small and macromolecules that can exist in soil [31] and contribute to the soil structure (not least by aggregating inorganic soil particles [11,32]). Depending on the nature of the molecule and other conditions such as pH, water activity and dissolved oxygen tension, such ‘carbon’ will reside in soil for a greater or lesser period (defining its ‘recalcitrance’ [33]). Interestingly, it is increasingly being recognised (e.g. [34,35]) that this recalcitrance may be more a property of where the molecule is sequestered than what it is chemically, and may also depend on supplies of fresh carbon [36]. At all events, eventually, most of the carbon will be re-respired to the atmosphere as CO2. As a systems property [37], clearly the steady-state extent of sequestration depends on the topology and kinetics of all steps in the network, with the control of flux being distributed (e.g. [20,38]). Equally clearly, the relative contributions of different steps will vary in different soils [33]. However, as the step that determines the initial distribution of carbon in the soil by plant roots [26,39], it is the rooting process itself—the focus of this themed issue—on which we necessarily concentrate.

Figure 2.

Figure 2.

High-level analysis of the major processes involved in soil carbon sequestration for photosynthetically fixed CO2.

4. The genetic control of plant root depths and architecture, and G X E interactions

As mentioned, plant root depths and architecture are partly controlled by physical and agronomic (and hormonal, e.g. [40,41]) factors, but to a substantial degree [4,4246] it is the genetic make-up of the organism (including genes whose products affect hormone production and distribution [47]) that determines how deep and bushy its roots can become. Some plants can indeed produce very substantial root architectures (e.g. [4851], and there is evidence for genetically determined variation in root architecture between plant types (e.g. [48,49,52]), between different cultivars of the same plant (e.g. [5362]), and between different mutant strains with known genetic alleles or defects (e.g. [6373]). In some cases, the number of genes involved in effecting substantial morphological changes may be quite small (e.g. [74,75]).

Clearly this encourages us to develop breeding programmes for plants with improved root architectures that can sequester carbon (and other nutrients, plus water) more effectively [4]. Such encouragement should be seen in broad terms as a contribution to ecosystem services [76], as well as agricultural yields [55,77], and the economic benefits derived therefrom might be enhanced by the payment of carbon credits [14,15,7880].

I stress the breeding aspects, since we now know, especially from work with animals, that ‘genomic selection’ can speed genetic gain considerably [8189], and it will soon be the norm to exploit modern whole-genome sequencing methods [90,91] to sequence every organism of interest in a breeding population.

This said, the necessary breeding will need to be assessed under a variety of agronomic conditions, since there is little doubt that agronomic practices can have a considerable impact on plant yields (there is substantial variation in yields across individual fields planted with the same crop, e.g. [92]), and in a manner that is of course dependent on the genetic make-up of the plants (G×E interactions). The System of Rice Intensification (e.g. [9398]) provides a particularly nice example of that.

5. Roots plus shoots: not a zero-sum game

It is sometimes opined that any breeding-based improvement (i.e. increase) in below-ground biomass would be balanced by an equivalent decrease in above-ground (and hence agriculturally harvestable) biomass. This is a priori implausible since they are more likely to feed each other than not, and most bioprocess fluxes are in fact demand-led [99]. At all events, there is plenty of evidence that the distribution of resource between root and shoot is not a zero-sum game:

  • — larger plant types as judged by above-ground biomass do in general tend to have larger roots—compare trees and typical crop plants, for instance [100,101];

  • — many mutants that have larger roots have above-ground biomass that is not smaller, and is often larger, than those of their parental wild type or ‘baseline’ strain (e.g. [45,77,102112]);

  • — simple improvements in agronomic practices such as appropriate nutrient supply can increase the total amount of both root and shoot biomass (e.g. [113117]), and in systems such as the System of Rice Intensification mentioned above apparently quite substantially so;

  • — similar behaviour (simultaneous increases in root and shoot biomass) can be induced by other non-host-genetic means that do not directly involve nutrients [118120].

It is therefore entirely reasonable that we can improve plant root traits (and specifically to increase the size and extent of roots) in a manner that is not at the cost—and in many cases will likely be to the benefit—of above-ground traits including harvestable biomass. Both genetic and environmental (agronomic) approaches are likely to be of benefit here.

6. Techniques for assessing root architectures in situ

Science consists of both analysis and synthesis, and while high-throughput genomics has of course increased its throughput massively over the last decade, the same cannot be said of phenotyping [121]. Traditional (and many modern) methods for assessing the extent and nature of root phenotypes involve careful excavation and recording (e.g. [56,58,62,122]), but we need automated, non-invasive methods that likely involve some kind of spectroscopy or imaging [123] coupled to sophisticated computation. All have strengths and weaknesses, and some may be surrogates that measure properties (e.g. moisture content, or the force required to remove a plant from the soil [96]) that simply correlate with root properties, but some instrumental methods that appear promising include methods based on various kinds of impedimetry / capacitance / permittivity [124128] (see also [129,130]) and impedance tomography [131], optical imaging [59,132134], X-ray microtomography [57], ground-penetrating radar [131,135,136], microwave spectroscopy [137], neutron spectroscopy and tomography [138] and magnetic resonance imaging [139] (that may be combined with positron emission tomography [140]). Fusion methods that combine multiple inputs can always [141] be expected to perform better than individual approaches.

7. Possible amounts of C that can be sequestered in grasslands and agricultural soils

Calculations suggest (http://dbkgroup.org/carbonsequestration/rootsystem.html) [4] that the amount of C that can be stored in agricultural soils is considerably greater than is stored there now [12,14,142,143], namely in amounts similar to those that might be generated anthropogenically for the next 50 years, thereby stabilising atmospheric CO2 at present levels. However, it is to be recognised that these calculations carry considerable uncertainty [144] as we know comparatively little about the rate and extent of root growth and in particular (e.g. [145148]) the lifetime(s) of the various soil components before ultimately they are re-respired. The variation in sequestration time (‘recalcitrance’) of different forms of carbon-containing molecule can be very great, implying scope for increasing it by selective breeding (much as one can breed for enhanced degradability when this is desired for biomass crops [149]). Some analyses of existing grasslands and energy crops imply that at least 100 t ha−1 of C may be sequestered in roots (or at least below ground) in the steady state [150,151], while tree forests usually sequester even more [152,153] (so deforestation [153,154] and forest drought [155] are especially damaging). One metre depth of soil containing just 1 per cent C at a bulk relative density of unity equates to 10 kg m−2 or 100 t ha−1, so estimates of 200 t ha−1 in just the top metre alone [151] imply a considerably greater carrying capacity than that presently sustained, even before more recalcitrant forms of carbon such as biochar [156158] are considered.

8. Other benefits of enhanced root architectures beyond C sequestration

This article has concentrated on the benefits to be had from improved root architectures largely in terms of carbon sequestration. However, it would be remiss not to stress that such improved root architectures also bring many other agricultural benefits [55,77], including improvements to soil structure [159], hydrology [160], drought tolerance (e.g. [161,162]) and N use efficiency [163]; in some cases these benefits may well prove to be more important overall, but can certainly be seen as additional benefits with regard to the C sequestration agenda.

9. Systems approaches

As mentioned above, it is necessary to consider the whole (eco)system when undertaking studies of this type, and a strategy or intervention that seems to have a proximate benefit may have an ultimate disbenefit (or vice versa), due to ignoring important contributors to net balances or the propagation of the change via complex positive and negative feedback loops (e.g. [25], and for a more general account [164]). Thus changes in climate and raised CO2 may have unexpected effects on root–soil interactions [165] or any other processes, and the ability to sequester C will depend not only on the amount, extent and recalcitrance of plant roots but of the production rate and nature of root exudates, the amount of nitrogen [166] and other nutrients, and biophysical properties such as moisture content, soil compaction and the like. We also need to be ever mindful that changes affecting below-ground processes, especially if conditions are allowed to become anaerobic, might turn fixed CO2 into much more damaging gases such as methane and nitrous oxide [2]—something to be avoided at all costs.

10. Concluding remarks: the research agenda

This brief review purposely takes a relatively restricted and high-level approach to the problem of sequestering atmospheric carbon in soils. It recognises that (i) soils contain much carbon but are far from saturated with regard to organic matter, (ii) most soil carbon is derived from roots rather than from shoots and leaf litter, (iii) much of the carbon and most of the measurements thereof are restricted to the top 1 m of soil, and developing plants with 2 m roots could sequester considerably more C than is done presently, (iv) the transformation pathways and lifetimes of carbon components in the soil (both topsoil and subsoils), and what determines them both biologically and biophysically, are much less well understood than we would like, (v) the longer any particular form of carbon is held below ground before it is re-respired or emitted, the greater the amount that can be sequestered in the steady state, (vi) many analyses have concentrated more on ‘what is there’ than ‘what we might do about it’, and (vii) modern whole genome sequence-driven breeding offers huge opportunities for accelerating plant improvement.

As with scientific advances generally [167], we may expect to see iterative cycles, in that we may find empirically (through studying the variance between experiments [168]) that a particular cultivar treated with a particular agronomy does well with regard to soil carbon sequestration, and we may find from phenotypic (including ‘omics’) measurements that roots are involved mechanistically. We might then seek to apply directed breeding and agronomic practices that improve such root properties directly and then test if such crops also sequester carbon more effectively.

Thus, molecular breeding and appropriate agronomy (largely still matters for experiment), coupled to the necessary phenotyping approaches, especially non-invasive measurements of various kinds plus the attendant informatics and improved modelling [169], can lead to improved food and non-food crops that also have desirable carbon sequestration traits. Consequently, there is much to play for.

Acknowledgements

I thank many colleagues for useful discussions.

References

  • 1.Canadell J. G., et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18 866–18 870 10.1073/pnas.0702737104 (doi:10.1073/pnas.0702737104) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Montzka S. A., Dlugokencky E. J., Butler J. H. 2011. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 10.1038/nature10322 (doi:10.1038/nature10322) [DOI] [PubMed] [Google Scholar]
  • 3.Royer D. L., Berner R. A., Beerling D. J. 2001. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 10.1016/S0012-8252(00)00042-8 (doi:10.1016/S0012-8252(00)00042-8) [DOI] [Google Scholar]
  • 4.Kell D. B. 2011. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 108, 407–418 10.1093/aob/mcr175 (doi:10.1093/aob/mcr175) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Buzan T. 2002. How to mind map. London, UK: Thorsons [Google Scholar]
  • 6.Batjes N. H. 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci. 47, 151–163 10.1111/j.1365-2389.1996.tb01386.x (doi:10.1111/j.1365-2389.1996.tb01386.x) [DOI] [Google Scholar]
  • 7.Smith P. 2004. Soils as carbon sinks: the global context. Soil Use Manage. 20, 212–218 10.1079/SUM2004233 (doi:10.1079/SUM2004233) [DOI] [Google Scholar]
  • 8.Bond-Lamberty B., Thomson A. 2010. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 10.1038/nature08930 (doi:10.1038/nature08930) [DOI] [PubMed] [Google Scholar]
  • 9.Macías F., Arbestain M. C. 2010. Soil carbon sequestration in a changing global environment. Mitigation Adapt. Strateg. Glob. Change 15, 511–529 10.1007/s11027-010-9231-4 (doi:10.1007/s11027-010-9231-4) [DOI] [Google Scholar]
  • 10.Smith P., et al. 2010. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 139, 302–315 10.1016/j.agee.2010.04.004 (doi:10.1016/j.agee.2010.04.004) [DOI] [Google Scholar]
  • 11.Jones M. B., Donnelly A. 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO(2). New Phytol. 164, 423–439 10.1111/j.1469-8137.2004.01201.x (doi:10.1111/j.1469-8137.2004.01201.x) [DOI] [Google Scholar]
  • 12.Lorenz K., Lal R. 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 88, 35–66 10.1016/S0065-2113(05)88002-2 (doi:10.1016/S0065-2113(05)88002-2) [DOI] [Google Scholar]
  • 13.Clay J. 2011. Freeze the footprint of food. Nature 475, 287–289 10.1038/475287a (doi:10.1038/475287a) [DOI] [PubMed] [Google Scholar]
  • 14.Lal R. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36, S33–S9 10.1016/j.foodpol.2010.12.001 (doi:10.1016/j.foodpol.2010.12.001) [DOI] [Google Scholar]
  • 15.Smith P., et al. 2008. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 10.1098/rstb.2007.2184 (doi:10.1098/rstb.2007.2184) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Blankenship R. E., et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 10.1126/science.1200165 (doi:10.1126/science.1200165) [DOI] [PubMed] [Google Scholar]
  • 17.Khatiwala S., Primeau F., Hall T. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462, 346–349 10.1038/nature08526 (doi:10.1038/nature08526) [DOI] [PubMed] [Google Scholar]
  • 18.MacKay D. J. C. 2008. Sustainable energy: without the hot air. Cambridge, UK: UIT Cambridge; See http://www.withouthotair.com/ [Google Scholar]
  • 19.Kheshgi H. S. 1995. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20, 915–922 10.1016/0360-5442(95)00035-F (doi:10.1016/0360-5442(95)00035-F) [DOI] [Google Scholar]
  • 20.Kell D. B. 2006. Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher lecture. FEBS J. 273, 873–894 10.1111/j.1742-4658.2006.05136.x (doi:10.1111/j.1742-4658.2006.05136.x) [DOI] [PubMed] [Google Scholar]
  • 21.Herrgård M. J., et al. 2008. A consensus yeast metabolic network obtained from a community approach to systems biology. Nature Biotechnol. 26, 1155–1160 10.1038/nbt1492 (doi:10.1038/nbt1492) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Smallbone K., Simeonidis E., Broomhead D. S., Kell D. B. 2007. Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J. 274, 5576–5585 10.1111/j.1742-4658.2007.06076.x (doi:10.1111/j.1742-4658.2007.06076.x) [DOI] [PubMed] [Google Scholar]
  • 23.Hucka M., et al. 2003. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 10.1093/bioinformatics/btg015 (doi:10.1093/bioinformatics/btg015) [DOI] [PubMed] [Google Scholar]
  • 24.Le Novère N., et al. 2009. The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 10.1038/nbt.1558 (doi:10.1038/nbt.1558) [DOI] [PubMed] [Google Scholar]
  • 25.Bardgett R. D. 2011. The root of the problem. The Scientist. 25, 32–37 [Google Scholar]
  • 26.Hodge A., Berta G., Doussan C., Merchan F., Crespi M. 2009. Plant root growth, architecture and function. Plant Soil 321, 153–187 10.1007/s11104-009-9929-9 (doi:10.1007/s11104-009-9929-9) [DOI] [Google Scholar]
  • 27.Hinsinger P., Bengough A. G., Vetterlein D., Young I. M. 2009. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117–152 10.1007/s11104-008-9885-9 (doi:10.1007/s11104-008-9885-9) [DOI] [Google Scholar]
  • 28.Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 10.1038/nrmicro1987 (doi:10.1038/nrmicro1987) [DOI] [PubMed] [Google Scholar]
  • 29.Richardson A. E., Barea J. M., McNeill A. M., Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321, 305–339 10.1007/s11104-009-9895-2 (doi:10.1007/s11104-009-9895-2) [DOI] [Google Scholar]
  • 30.Rumpel C., Kögel-Knabner I. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158 10.1007/s11104-010-0391-5 (doi:10.1007/s11104-010-0391-5) [DOI] [Google Scholar]
  • 31.Kögel-Knabner I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 10.1016/S0038-0717(01)00158-4 (doi:10.1016/S0038-0717(01)00158-4) [DOI] [Google Scholar]
  • 32.Wilson G. W., Rice C. W., Rillig M. C., Springer A., Hartnett D. C. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol. Lett. 12, 452–461 10.1111/j.1461-0248.2009.01303.x (doi:10.1111/j.1461-0248.2009.01303.x) [DOI] [PubMed] [Google Scholar]
  • 33.von Lützow M., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. Eur. J. Soil Sci. 57, 426–445 10.1111/j.1365-2389.2006.00809.x (doi:10.1111/j.1365-2389.2006.00809.x) [DOI] [Google Scholar]
  • 34.Rasse D. P., Rumpel C., Dignac M. F. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 10.1007/s11104-004-0907-y (doi:10.1007/s11104-004-0907-y) [DOI] [Google Scholar]
  • 35.Schmidt M. W. I., et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 10.1038/nature10386 (doi:10.1038/nature10386) [DOI] [PubMed] [Google Scholar]
  • 36.Fontaine S., Barot S., Barre P., Bdioui N., Mary B., Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 10.1038/nature06275 (doi:10.1038/nature06275) [DOI] [PubMed] [Google Scholar]
  • 37.Lucas M., Laplaze L., Bennett M. J. 2011. Plant systems biology: network matters. Plant Cell Environ. 34, 535–553 10.1111/j.1365-3040.2010.02273.x (doi:10.1111/j.1365-3040.2010.02273.x) [DOI] [PubMed] [Google Scholar]
  • 38.Kell D. B., Westerhoff H. V. 1986. Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol. Rev. 39, 305–320 10.1111/j.1574-6968.1986.tb01863.x (doi:10.1111/j.1574-6968.1986.tb01863.x) [DOI] [Google Scholar]
  • 39.Orwin K. H., Buckland S. M., Johnson D., Turner B. L., Smart S., Oakley S., Bardgett R. D. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. J. Ecol. 98, 1074–1083 10.1111/j.1365-2745.2010.01679.x (doi:10.1111/j.1365-2745.2010.01679.x) [DOI] [Google Scholar]
  • 40.Bishopp A., Help H., Helariutta Y. 2009. Cytokinin signaling during root development. Int. Rev. Cell Mol. Biol. 276, 1–48 10.1016/S1937-6448(09)76001-0 (doi:10.1016/S1937-6448(09)76001-0) [DOI] [PubMed] [Google Scholar]
  • 41.Fukaki H., Tasaka M. 2009. Hormone interactions during lateral root formation. Plant Mol. Biol. 69, 437–449 10.1007/s11103-008-9417-2 (doi:10.1007/s11103-008-9417-2) [DOI] [PubMed] [Google Scholar]
  • 42.Doussan C., Pages L., Pierret A. 2003. Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view. Agronomie 23, 419–431 10.1051/agro:2003027 (doi:10.1051/agro:2003027) [DOI] [Google Scholar]
  • 43.Kato Y., Abe J., Kamoshita A., Yamagishi J. 2006. Genotypic variation in root growth angle in rice (Oryza sativa, L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287, 117–129 10.1007/s11104-006-9008-4 (doi:10.1007/s11104-006-9008-4) [DOI] [Google Scholar]
  • 44.Osmont K. S., Sibout R., Hardtke C. S. 2007. Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58, 93–113 10.1146/annurev.arplant.58.032806.104006 (doi:10.1146/annurev.arplant.58.032806.104006) [DOI] [PubMed] [Google Scholar]
  • 45.Abberton M. T., Marshall A. H., Humphreys M. W., Macduff J. H., Collins R. P., Marley C. L. 2008. Genetic improvement of forage species to reduce the environmental impact of temperate livestock grazing systems. Adv. Agron. 98, 311–355 10.1016/S0065-2113(08)00206-X (doi:10.1016/S0065-2113(08)00206-X) [DOI] [Google Scholar]
  • 46.Dello Ioio R., Nakamura K., Moubayidin L., Perilli S., Taniguchi M., Morita M. T., Aoyama T, Costantino P., Sabatini S. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 10.1126/science.1164147 (doi:10.1126/science.1164147) [DOI] [PubMed] [Google Scholar]
  • 47.Casson S. A., Lindsey K. 2003. Genes and signalling in root development. New Phytol. 158, 11–38 [Google Scholar]
  • 48.Jackson R. B., Canadell J., Ehleringer J. R., Mooney H. A., Sala O. E., Schulze E. D. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 10.1007/BF00333714 (doi:10.1007/BF00333714) [DOI] [PubMed] [Google Scholar]
  • 49.Jobbágy E. G., Jackson R. B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 (doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2) [DOI] [Google Scholar]
  • 50.Cox T. S., Glover J. D., Van Tassel D. L., Cox C. M., DeHaan L. R. 2006. Prospects for developing perennial-grain crops. Bioscience 56, 649–659 10.1641/0006-3568(2006)56[649:PFDPGC]2.0.CO;2 (doi:10.1641/0006-3568(2006)56[649:PFDPGC]2.0.CO;2) [DOI] [Google Scholar]
  • 51.Glover J. D., et al. 2010. Increased food and ecosystem security via perennial grains. Science 328, 1638–1639 10.1126/science.1188761 (doi:10.1126/science.1188761) [DOI] [PubMed] [Google Scholar]
  • 52.Burch G. J., Johns G. G. 1978. Root absorption of water and physiological responses to water deficits by Festuca arundinacea Schreb. and Trifolim repens L. Aust. J. Plant Physiol. 5, 859–871 10.1071/PP9780859 (doi:10.1071/PP9780859) [DOI] [Google Scholar]
  • 53.Loudet O., Gaudon V., Trubuil A., Daniel-Vedele F. 2005. Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor. Appl. Genet. 110, 742–753 10.1007/s00122-004-1900-9 (doi:10.1007/s00122-004-1900-9) [DOI] [PubMed] [Google Scholar]
  • 54.De Smet I., Vanneste S., Inzé D., Beeckman T. 2006. Lateral root initiation or the birth of a new meristem. Plant Mol. Biol. 60, 871–887 10.1007/s11103-005-4547-2 (doi:10.1007/s11103-005-4547-2) [DOI] [PubMed] [Google Scholar]
  • 55.Lynch J. P. 2007. Roots of the second green revolution. Austr. J. Bot. 55, 493–512 10.1071/BT06118 (doi:10.1071/BT06118) [DOI] [Google Scholar]
  • 56.Danjon F., Reubens B. 2008. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303, 1–34 10.1007/s11104-007-9470-7 (doi:10.1007/s11104-007-9470-7) [DOI] [Google Scholar]
  • 57.Gregory P. J., et al. 2009. Root phenomics of crops: opportunities and challenges. Funct. Plant Biol. 36, 922–929 10.1071/FP09150 (doi:10.1071/FP09150) [DOI] [PubMed] [Google Scholar]
  • 58.Kutschera L., Lichtenegger E., Sobotik M. 2009. Wurzelatlas der Kulturpflanzen gemäßigter Gebiete mit Arten des Feldgemüsebaues. Frankfurt/Main: DLG Verlag [Google Scholar]
  • 59.Iyer-Pascuzzi A. S., Symonova O., Mileyko Y., Hao Y., Belcher H., Harer J., Weitz J. S., Benfey P. N. 2010. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol. 152, 1148–1157 10.1104/pp.109.150748 (doi:10.1104/pp.109.150748) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Tuberosa R., Salvi S., Giuliani S., Sanguineti M. C., Frascaroli E., Conti S., Landi P. 2010. Genomics of root architecture and functions in maize. In Root genomics (eds Costa de Oliveira A., Varshney R. K.), pp. 179–204 Heidelberg, Germany: Springer [Google Scholar]
  • 61.Hund A., Reimer R., Messmer R. 2011. A consensus map of QTLs controlling the root length of maize. Plant Soil 344, 143. 10.1007/s11104-011-0735-9 (doi:10.1007/s11104-011-0735-9) [DOI] [Google Scholar]
  • 62.Trachsel S., Kaeppler S. M., Brown K. M., Lynch J. P. 2011. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87 10.1007/s11104-010-0623-8 (doi:10.1007/s11104-010-0623-8) [DOI] [Google Scholar]
  • 63.Zhang H., Forde B. G. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409 10.1126/science.279.5349.407 (doi:10.1126/science.279.5349.407) [DOI] [PubMed] [Google Scholar]
  • 64.Hardtke C. S., Mouchel C. F., Briggs G. C. 2004. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 18, 700–714 10.1101/gad.1187704 (doi:10.1101/gad.1187704) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Levesque M. P., et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol. 4, e143. 10.1371/journal.pbio.0040143 (doi:10.1371/journal.pbio.0040143) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Lelandais-Brière C., Jovanovic M., Torres G. A. M., Perrin Y., Lemoine R., Corre-Menguy F., Hartmann C. 2007. Disruption of AtOCT1, an organic cation transporter gene, affects root development and carnitine-related responses in Arabidopsis. Plant J. 51, 154–164 10.1111/j.1365-313X.2007.03131.x (doi:10.1111/j.1365-313X.2007.03131.x) [DOI] [PubMed] [Google Scholar]
  • 67.Hochholdinger F., Tuberosa R. 2009. Genetic and genomic dissection of maize root development and architecture. Curr. Opin. Plant Biol. 12, 172–177 10.1016/j.pbi.2008.12.002 (doi:10.1016/j.pbi.2008.12.002) [DOI] [PubMed] [Google Scholar]
  • 68.Hochholdinger F. 2009. The maize root system: morphology, anatomy, and genetics. In Handbook of maize: its biology (eds Bennetzen J. L., Hake S. C.), pp. 145–160 Berlin, Germany: Springer. [Google Scholar]
  • 69.Rebouillat J., et al. 2009. Molecular genetics of rice root development. Rice 2, 15–34 10.1007/s12284-008-9016-5 (doi:10.1007/s12284-008-9016-5) [DOI] [Google Scholar]
  • 70.Benfey P. N., Bennett M., Schiefelbein J. 2010. Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant J. 61, 992–1000 10.1111/j.1365-313X.2010.04129.x (doi:10.1111/j.1365-313X.2010.04129.x) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Coudert Y., Perin C., Courtois B., Khong N. G., Gantet P. 2010. Genetic control of root development in rice, the model cereal. Trends Plant Sci. 15, 219–226 10.1016/j.tplants.2010.01.008 (doi:10.1016/j.tplants.2010.01.008) [DOI] [PubMed] [Google Scholar]
  • 72.Scacchi E., Salinas P., Gujas B., Santuari L., Krogan N., Ragni L., Berleth T., Hardtke C. S. 2010. Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc. Natl Acad. Sci. USA 107, 22 734–22 739 10.1073/pnas.1014716108 (doi:10.1073/pnas.1014716108) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Lynch J. P. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol. 156, 1041–1049 10.1104/pp.111.175414 (doi:10.1104/pp.111.175414) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Thomas H., Thomas H. M., Ougham H. 2000. Annuality, perenniality and cell death. J. Exp. Bot. 51, 1781–1788 10.1093/jexbot/51.352.1781 (doi:10.1093/jexbot/51.352.1781) [DOI] [PubMed] [Google Scholar]
  • 75.Melzer S., Lens F., Gennen J., Vanneste S., Rohde A., Beeckman T. 2008. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat. Genet. 40, 1489–1492 10.1038/ng.253 (doi:10.1038/ng.253) [DOI] [PubMed] [Google Scholar]
  • 76.Millennium Ecosystem Assessment 2005. Ecosystems and human well-being. Washington, DC: Island Press; See http://www.millenniumassessment.org/documents/document.356.aspx.pdf [Google Scholar]
  • 77.Den Herder G., Van Isterdael G., Beeckman T., De Smet I. 2010. The roots of a new green revolution. Trends Plant Sci. 15, 600–607 10.1016/j.tplants.2010.08.009 (doi:10.1016/j.tplants.2010.08.009) [DOI] [PubMed] [Google Scholar]
  • 78.Rokityanskiy D., Benítez P. C., Kraxner F., McCallum I., Obersteiner M., Rametsteiner E., Yamagata Y. 2007. Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technol. Forecasting Soc. Change 74, 1057–1082 10.1016/j.techfore.2006.05.022 (doi:10.1016/j.techfore.2006.05.022) [DOI] [Google Scholar]
  • 79.MacLeod M., et al. 2010. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric. Syst. 103, 198–209 10.1016/j.agsy.2010.01.002 (doi:10.1016/j.agsy.2010.01.002) [DOI] [Google Scholar]
  • 80.Smith P., Olesen J. E. 2010. Synergies between the mitigation of, and adaptation to, climate change in agriculture. J. Agric. Sci. 148, 543–552 10.1017/S0021859610000341 (doi:10.1017/S0021859610000341) [DOI] [Google Scholar]
  • 81.Meuwissen T. H., Hayes B. J., Goddard M. E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Gianola D., Perez-Enciso M., Toro M. A. 2003. On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163, 347–365 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Xu S. 2003. Estimating polygenic effects using markers of the entire genome. Genetics 163, 789–801 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Schaeffer L. R. 2006. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123, 218–223 10.1111/j.1439-0388.2006.00595.x (doi:10.1111/j.1439-0388.2006.00595.x) [DOI] [PubMed] [Google Scholar]
  • 85.Goddard M. E., Hayes B. J. 2007. Genomic selection. J. Anim. Breed Genet. 124, 323–330 10.1111/j.1439-0388.2007.00702.x (doi:10.1111/j.1439-0388.2007.00702.x) [DOI] [PubMed] [Google Scholar]
  • 86.Luan T., Woolliams J. A., Lien S., Kent M., Svendsen M., Meuwissen T. H. 2009. The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation. Genetics 183, 1119–1126 10.1534/genetics.109.107391 (doi:10.1534/genetics.109.107391) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Ødegård J., Yazdi M. H., Sonesson A. K., Meuwissen T. H. 2009. Incorporating desirable genetic characteristics from an inferior into a superior population using genomic selection. Genetics 181, 737–745 10.1534/genetics.108.098160 (doi:10.1534/genetics.108.098160) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Fahrenkrug S. C., et al. 2010. Precision genetics for complex objectives in animal agriculture. J. Anim. Sci. 88, 2530–2539 10.2527/jas.2010-2847 (doi:10.2527/jas.2010-2847) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Maenhout S., De Baets B., Haesaert G. 2010. Graph-based data selection for the construction of genomic prediction models. Genetics 185, 1463–1475 10.1534/genetics.110.116426 (doi:10.1534/genetics.110.116426) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Edwards D., Batley J. 2010. Plant genome sequencing: applications for crop improvement. Plant Biotechnol. J. 8, 2–9 10.1111/j.1467-7652.2009.00459.x (doi:10.1111/j.1467-7652.2009.00459.x) [DOI] [PubMed] [Google Scholar]
  • 91.Meuwissen T., Goddard M. 2010. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185, 623–631 10.1534/genetics.110.116590 (doi:10.1534/genetics.110.116590) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Lark R. M. 2001. Some tools for parsimonious modelling and interpretation of within-field variation of soil and crop systems. Soil Tillage Res. 58, 99–111 10.1016/S0167-1987(00)00161-6 (doi:10.1016/S0167-1987(00)00161-6) [DOI] [Google Scholar]
  • 93.Stoop W. A., Uphoff N., Kassam A. 2002. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agric. Syst. 71, 249–274 10.1016/S0308-521X(01)00070-1 (doi:10.1016/S0308-521X(01)00070-1) [DOI] [Google Scholar]
  • 94.Mishra A., Salokhe V. M. 2010. The effects of planting pattern and water regime on root morphology, physiology and grain yield of rice. J. Agron. Crop. Sci. 196, 368–378 10.1111/j.1439-037X.2010.00421.x (doi:10.1111/j.1439-037X.2010.00421.x) [DOI] [Google Scholar]
  • 95.Thakur A. K., Uphoff N., Antony E. 2010. An assessment of physiological effects of System of Rice Intensification (SRI) practices compared with recommended rice cultivation practices in India. Exp. Agric. 46, 77–98 10.1017/S0014479709990548 (doi:10.1017/S0014479709990548) [DOI] [Google Scholar]
  • 96.Barison J., Uphoff N. 2011. Rice yield and its relation to root growth and nutrient-use efficiency under SRI and conventional cultivation: an evaluation in Madagascar. Paddy Water Environ. 9, 65–78 10.1007/s10333-010-0229-z (doi:10.1007/s10333-010-0229-z) [DOI] [Google Scholar]
  • 97.Mishra A., Salokhe V. M. 2011. Rice root growth and physiological responses to SRI water management and implications for crop productivity. Paddy Water Environ. 9, 41–52 10.1007/s10333-010-0240-4 (doi:10.1007/s10333-010-0240-4) [DOI] [Google Scholar]
  • 98.Uphoff N., Kassam A., Harwood R. 2011. SRI as a methodology for raising crop and water productivity: productive adaptations in rice agronomy and irrigation water management. Paddy Water Environ. 9, 3–11 10.1007/s10333-010-0224-4 (doi:10.1007/s10333-010-0224-4) [DOI] [Google Scholar]
  • 99.Hofmeyr J. S., Cornish-Bowden A. 2000. Regulating the cellular economy of supply and demand. FEBS Lett. 476, 47–51 10.1016/S0014-5793(00)01668-9 (doi:10.1016/S0014-5793(00)01668-9) [DOI] [PubMed] [Google Scholar]
  • 100.Gregory P. J. 2006. Plant roots: growth, activity and interaction with soils. Oxford, UK: Blackwell [Google Scholar]
  • 101.Mokany K., Raison R. J., Prokushkin A. S. 2006. Critical analysis of root : shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 10.1111/j.1365-2486.2005.001043.x (doi:10.1111/j.1365-2486.2005.001043.x) [DOI] [Google Scholar]
  • 102.Bingham I. J. 2001. Soil-root-canopy interactions. Ann. Appl. Biol. 138, 243–51 10.1111/j.1744-7348.2001.tb00108.x (doi:10.1111/j.1744-7348.2001.tb00108.x) [DOI] [Google Scholar]
  • 103.Price A. H., Steele K. A., Gorham J., Bridges J. M., Moore B. J., Evans J. L., Richardson P., Jones R. G. W. 2002. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes I. Root distribution, water use and plant water status. Field Crops Res. 76, 11–24 10.1016/S0378-4290(02)00012-6 (doi:10.1016/S0378-4290(02)00012-6) [DOI] [Google Scholar]
  • 104.Bonos S. A., Rush D., Hignight K., Meyer W. A. 2004. Selection for deep root production in tall fescue and perennial ryegrass. Crop Sci. 44, 1770–1775 10.2135/cropsci2004.1770 (doi:10.2135/cropsci2004.1770) [DOI] [Google Scholar]
  • 105.Passioura J. 2006. Increasing crop productivity when water is scarce—from breeding to field management. Agric. Water Manage. 80, 176–196 10.1016/j.agwat.2005.07.012 (doi:10.1016/j.agwat.2005.07.012) [DOI] [Google Scholar]
  • 106.Wang H., Inukai Y., Yamauchi A. 2006. Root development and nutrient uptake. Crit. Rev. Plant. Sci. 25, 279–301 10.1080/07352680600709917 (doi:10.1080/07352680600709917) [DOI] [Google Scholar]
  • 107.Hund A., Richner W., Soldati A., van Fracheboud Y., Stamp P. 2007. Root morphology and photosynthetic performance of maize inbred lines at low temperature. Eur. J. Agron. 27, 52–61 10.1016/j.eja.2007.01.003 (doi:10.1016/j.eja.2007.01.003) [DOI] [Google Scholar]
  • 108.Sanguineti M. C., Li S., Maccaferri M., Corneti S., Rotondo F., Chiari T., Tuberosa R. 2007. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann. Appl. Biol. 151, 291–305 10.1111/j.1744-7348.2007.00198.x (doi:10.1111/j.1744-7348.2007.00198.x) [DOI] [Google Scholar]
  • 109.Crush J. R., Nichols S. N., Easton H. S., Ouyang L., Hume D. E. 2009. Comparisons between wild populations and bred perennial ryegrasses for root growth and root/shoot partitioning. N Z J. Agric. Res. 52, 161–169 10.1080/00288230909510500 (doi:10.1080/00288230909510500) [DOI] [Google Scholar]
  • 110.Hammer G. L., Dong Z. S., McLean G., Doherty A., Messina C., Schusler J., Zinselmeier C., Paszkiewicz S., Cooper M. 2009. Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci. 49, 299–312 10.2135/cropsci2008.03.0152 (doi:10.2135/cropsci2008.03.0152) [DOI] [Google Scholar]
  • 111.Zhang H., Yang J., Xue Y. G., Wang Z. Q., Zhang J. H. 2009. Morphological and physiological traits of roots and their relationships with shoot growth in ‘super’ rice. Field Crops Res. 113, 31–40 10.1016/j.fcr.2009.04.004 (doi:10.1016/j.fcr.2009.04.004) [DOI] [Google Scholar]
  • 112.Peng Y. F., Niu J. F., Peng Z. P., Zhang F. S., Li C. J. 2010. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Res. 115, 85–93 10.1016/j.fcr.2009.10.006 (doi:10.1016/j.fcr.2009.10.006) [DOI] [Google Scholar]
  • 113.Ainsworth E. A., et al. 2002. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8, 695–709 10.1046/j.1365-2486.2002.00498.x (doi:10.1046/j.1365-2486.2002.00498.x) [DOI] [Google Scholar]
  • 114.Gastal F., Lemaire G. 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J. Exp. Bot. 53, 789–799 10.1093/jexbot/53.370.789 (doi:10.1093/jexbot/53.370.789) [DOI] [PubMed] [Google Scholar]
  • 115.Linkohr B. I., Williamson L. C., Fitter A. H., H. M. O. Leyser. 2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751–760 10.1046/j.1365-313X.2002.01251.x (doi:10.1046/j.1365-313X.2002.01251.x) [DOI] [PubMed] [Google Scholar]
  • 116.Grechi I., Vivin P., Hilbert G., Milin S., Robert T., Gaudillère J. P. 2007. Effect of light and nitrogen supply on internal C : N balance and control of root-to-shoot biomass allocation in grapevine. Env. Exp. Bot. 59, 139–149 10.1016/j.envexpbot.2005.11.002 (doi:10.1016/j.envexpbot.2005.11.002) [DOI] [Google Scholar]
  • 117.Huang H. C., Erickson R. S. 2007. Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J. Phytopathol. 155, 31–37 10.1111/j.1439-0434.2006.01189.x (doi:10.1111/j.1439-0434.2006.01189.x) [DOI] [Google Scholar]
  • 118.Rodriguez R. J., Freeman D. C., McArthur E. D., Kim Y. O., Redman R. S. 2009. Symbiotic regulation of plant growth, development and reproduction. Commun. Integr. Biol. 2, 141–143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Tokuhisa D., Shinano T., Watanabe T., Yamamura T., Osaki M. 2010. Promotion of root growth by the application of inosine. Soil Sci. Plant Nutr. 56, 272–280 10.1111/j.1747-0765.2010.00452.x (doi:10.1111/j.1747-0765.2010.00452.x) [DOI] [Google Scholar]
  • 120.Redman R. S., Kim Y. O., Woodward C. J. D. A., Greer C., Espino L., Doty S. L., Rodriguez R. J. 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6, e14823. 10.1371/journal.pone.0014823 (doi:10.1371/journal.pone.0014823) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Tester M., Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 10.1126/science.1183700 (doi:10.1126/science.1183700) [DOI] [PubMed] [Google Scholar]
  • 122.Pagès L., Serra V., Draye X., Doussan C., Pierret A. 2010. Estimating root elongation rates from morphological measurements of the root tip. Plant Soil 328, 35–44 10.1007/s11104-009-0079-x (doi:10.1007/s11104-009-0079-x) [DOI] [Google Scholar]
  • 123.Zhu J. M., Ingram P. A., Benfey P. N., Elich T. 2011. From lab to field, new approaches to phenotyping root system architecture. Curr. Opin. Plant Biol. 14, 310–317 10.1016/j.pbi.2011.03.020 (doi:10.1016/j.pbi.2011.03.020) [DOI] [PubMed] [Google Scholar]
  • 124.Chloupek O. 1977. Evaluation of size of a plant's root system using its electrical capacitance. Plant Soil 48, 525–532 10.1007/BF02187258 (doi:10.1007/BF02187258) [DOI] [Google Scholar]
  • 125.Nadezhdina N., Čermák J. 2003. Instrumental methods for studies of structure and function of root systems of large trees. J. Exp. Bot. 54, 1511–1521 10.1093/jxb/erg154 (doi:10.1093/jxb/erg154) [DOI] [PubMed] [Google Scholar]
  • 126.McBride R. A., Preston G. M., Bryan J., Candido M. 2004. Estimating root mass in young hybrid poplar trees using the electrical capacitance method. Agroforestr. Syst. 60, 305–309 10.1023/B:AGFO.0000024439.41932.e2 (doi:10.1023/B:AGFO.0000024439.41932.e2) [DOI] [Google Scholar]
  • 127.McBride R., Candido M., Ferguson J. 2008. Estimating root mass in maize genotypes using the electrical capacitance method. Arch. Agron. Soil Sci. 54, 215–226 10.1080/03650340701790658 (doi:10.1080/03650340701790658) [DOI] [Google Scholar]
  • 128.Pitre F. E., Brereton N. J. B., Audoire S., Richter G. M., Shield I., Karp A. 2010. Estimating root biomass in Salix viminalis×Salix schwerinii cultivar ‘Olof’ using the electrical capacitance method. Plant Biosyst. 144, 479–483 [Google Scholar]
  • 129.Harris C. M., Todd R. W., Bungard S. J., Lovitt R. W., Morris J. G., Kell D. B. 1987. The dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the estimation of microbial biomass. Enzyme Microbial. Technol. 9, 181–186 10.1016/0141-0229(87)90075-5 (doi:10.1016/0141-0229(87)90075-5) [DOI] [Google Scholar]
  • 130.Pethig R., Kell D. B. 1987. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32, 933–970 10.1088/0031-9155/32/8/001 (doi:10.1088/0031-9155/32/8/001) [DOI] [PubMed] [Google Scholar]
  • 131.Zenone T., et al. 2008. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Funct. Plant Biol. 35, 1047–1058 10.1071/FP08062 (doi:10.1071/FP08062) [DOI] [PubMed] [Google Scholar]
  • 132.Durham Brooks T. L., Miller N. D., Spalding E. P. 2010. Plasticity of Arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis. Plant Physiol. 152, 206–216 10.1104/pp.109.145292 (doi:10.1104/pp.109.145292) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.French A., Ubeda-Tomas S., Holman T. J., Bennett M. J., Pridmore T. 2009. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol. 150, 1784–1795 10.1104/pp.109.140558 (doi:10.1104/pp.109.140558) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Vegapareddy M., Richter G. M., Goulding K. W. T. 2010. Using digital image analysis to quantify the architectural parameters of roots grown in thin rhizotrons. Plant Biosyst. 144, 499–506 [Google Scholar]
  • 135.Stover D. B., Day F. P., Butnor J. R., Drake B. G. 2007. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology 88, 1328–1334 10.1890/06-0989 (doi:10.1890/06-0989) [DOI] [PubMed] [Google Scholar]
  • 136.Cui X. H., Chen J., Shen J. S., Cao X., Chen X. H., Zhu X. L. 2011. Modeling tree root diameter and biomass by ground-penetrating radar. Sci. China Earth Sci. 54, 711–719 10.1007/s11430-010-4103-z (doi:10.1007/s11430-010-4103-z) [DOI] [Google Scholar]
  • 137.Jackson T. J., Le Vine D. M., Hsu A. Y., Oldak A., Starks P. J., Swift C. T., Isham J. D., Haken M. 1999. Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens. 37, 2136–2151 10.1109/36.789610 (doi:10.1109/36.789610) [DOI] [Google Scholar]
  • 138.Esser H. G., Carminati A., Vontobel P., Lehmann E. H., Oswald S. E. 2010. Neutron radiography and tomography of water distribution in the root zone. J. Plant Nutr. Soil Sci. 173, 757–764 10.1002/jpln.200900188 (doi:10.1002/jpln.200900188) [DOI] [Google Scholar]
  • 139.Segal E., Kushnir T., Mualem Y., Shani U. 2008. Microsensing of water dynamics and root distributions in sandy soils. Vadose Zone J. 7, 1018–1026 10.2136/vzj2007.0121 (doi:10.2136/vzj2007.0121) [DOI] [Google Scholar]
  • 140.Nagel K. A., et al. 2009. Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct. Plant Biol. 36, 947–959 10.1071/FP09184 (doi:10.1071/FP09184) [DOI] [PubMed] [Google Scholar]
  • 141.Hastie T., Tibshirani R., Friedman J. 2001. The elements of statistical learning: data mining, inference and prediction. Berlin, Germany: Springer [Google Scholar]
  • 142.Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 10.1016/j.geoderma.2004.01.032 (doi:10.1016/j.geoderma.2004.01.032) [DOI] [Google Scholar]
  • 143.Thomson A. M., Izaurralde R. C., Smith S. J., Clarke L. E. 2008. Integrated estimates of global terrestrial carbon sequestration. Glob. Environ. Change Hum. Policy Dimens. 18, 192–203 10.1016/j.gloenvcha.2007.10.002 (doi:10.1016/j.gloenvcha.2007.10.002) [DOI] [Google Scholar]
  • 144.Chapin F. S., McFarland J., McGuire A. D., Euskirchen E. S., Ruess R. W., Kielland K. 2009. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. J. Ecol. 97, 840–850 10.1111/j.1365-2745.2009.01529.x (doi:10.1111/j.1365-2745.2009.01529.x) [DOI] [Google Scholar]
  • 145.Amelung W., Brodowski S., Sandhage-Hofmann A., Bol R. 2008. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100, 155–250 10.1016/S0065-2113(08)00606-8 (doi:10.1016/S0065-2113(08)00606-8) [DOI] [Google Scholar]
  • 146.Marschner B., et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171, 91–110 10.1002/jpln.200700049 (doi:10.1002/jpln.200700049) [DOI] [Google Scholar]
  • 147.Blagodatskaya E., Yuyukina T., Blagodatsky S., Kuzyakov Y. 2011. Turnover of soil organic matter and of microbial biomass under C(3)-C(4) vegetation change: consideration of (13)C fractionation and preferential substrate utilization. Soil Biol. Biochem. 43, 159–166 10.1016/j.soilbio.2010.09.028 (doi:10.1016/j.soilbio.2010.09.028) [DOI] [Google Scholar]
  • 148.Spence A., Simpson A. J., Mcnally D. J., Moran B. W., McCaul M. V., Hart K., Paull B., Kelleher B. P. 2011. The degradation characteristics of microbial biomass in soil. Geochim. Cosmochim. Acta 75, 2571–2581 10.1016/j.gca.2011.03.012 (doi:10.1016/j.gca.2011.03.012) [DOI] [Google Scholar]
  • 149.Mortimer J. C., et al. 2010. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc. Natl Acad. Sci. USA 107, 17 409–17 414 10.1073/pnas.1005456107 (doi:10.1073/pnas.1005456107) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Dondini M., Hastings A., Saiz G., Jones M. B., Smith P. 2009. The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. Glob. Change Biol. Bioenergy 1, 413–425 10.1111/j.1757-1707.2010.01033.x (doi:10.1111/j.1757-1707.2010.01033.x) [DOI] [Google Scholar]
  • 151.Silver W. L., Ryals R., Eviner V. 2010. Soil carbon pools in California's annual grassland ecosystems. Rangeland Ecol. Manage. 63, 128–136 10.2111/REM-D-09-00106.1 (doi:10.2111/REM-D-09-00106.1) [DOI] [Google Scholar]
  • 152.Malhi Y., Baldocchi D. D., Jarvis P. G. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ. 22, 715–740 10.1046/j.1365-3040.1999.00453.x (doi:10.1046/j.1365-3040.1999.00453.x) [DOI] [Google Scholar]
  • 153.Pan Y. 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993 10.1126/science.1201609 (doi:10.1126/science.1201609) [DOI] [PubMed] [Google Scholar]
  • 154.Le Quéré C., et al. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2, 831–836 10.1038/ngeo689 (doi:10.1038/ngeo689) [DOI] [Google Scholar]
  • 155.Phillips O. L., et al. 2009. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 10.1126/science.1164033 (doi:10.1126/science.1164033) [DOI] [PubMed] [Google Scholar]
  • 156.Atkinson C. J., Fitzgerald J. D., Hipps N. A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1–18 10.1007/s11104-010-0464-5 (doi:10.1007/s11104-010-0464-5) [DOI] [Google Scholar]
  • 157.Sohi S. P., Krull E., Lopez-Capel E., Bol R. 2010. A review of biochar and its use and function in soil. Adv. Agron. 105, 47–82 10.1016/S0065-2113(10)05002-9 (doi:10.1016/S0065-2113(10)05002-9) [DOI] [Google Scholar]
  • 158.Woolf D., Amonette J. E., Street-Perrott F. A., Lehmann J., Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Gregory A. S., et al. 2010. Soil management and grass species effects on the hydraulic properties of shrinking soils. Soil Sci. Soc. Am. J. 74, 753–761 10.2136/sssaj2009.0284 (doi:10.2136/sssaj2009.0284) [DOI] [Google Scholar]
  • 160.Macleod C. J. A., Binley A., Hawkins S. L., Humphreys M. W., Turner L. B., Whalley W. R., Haygarth P. M. 2007. Genetically modified hydrographs: what can grass genetics do for temperate catchment hydrology? Hydrol. Process. 21, 2217–2221 10.1002/hyp.6780 (doi:10.1002/hyp.6780) [DOI] [Google Scholar]
  • 161.Kamoshita A., Babu R. C., Boopathi N. M., Fukai S. 2008. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res. 109, 1–23 10.1016/j.fcr.2008.06.010 (doi:10.1016/j.fcr.2008.06.010) [DOI] [Google Scholar]
  • 162.McKenzie B. M., Bengough A. G., Hallett P. D., Thomas W. T. B., Forster B., McNicol J. W. 2009. Deep rooting and drought screening of cereal crops: a novel field-based method and its application. Field Crops Res. 112, 165–171 10.1016/j.fcr.2009.02.012 (doi:10.1016/j.fcr.2009.02.012) [DOI] [Google Scholar]
  • 163.Trachsel S., Messmer R., Stamp P., Hund A. 2009. Mapping of QTLs for lateral and axile root growth of tropical maize. Theor. Appl. Genet. 119, 1413–1424 10.1007/s00122-009-1144-9 (doi:10.1007/s00122-009-1144-9) [DOI] [PubMed] [Google Scholar]
  • 164.Levitt S. D., Dubner S. J. 2005. Freakonomics: a rogue economist explores the hidden side of everything. London, UK: Allen Lane [Google Scholar]
  • 165.De Deyn G. B., Cornelissen J. H. C., Bardgett R. D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 10.1111/j.1461-0248.2008.01164.x (doi:10.1111/j.1461-0248.2008.01164.x) [DOI] [PubMed] [Google Scholar]
  • 166.Dijkstra F. A., Hobbie S. E., Reich P. B. 2006. Soil processes affected by sixteen grassland species grown under different environmental conditions. Soil Sci. Soc. Am. J. 70, 770–777 10.2136/sssaj2005.0088 (doi:10.2136/sssaj2005.0088) [DOI] [Google Scholar]
  • 167.Kell D. B., Oliver S. G. 2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105 10.1002/bies.10385 (doi:10.1002/bies.10385) [DOI] [PubMed] [Google Scholar]
  • 168.Broadhurst D., Kell D. B. 2006. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–196 10.1007/s11306-006-0037-z (doi:10.1007/s11306-006-0037-z) [DOI] [Google Scholar]
  • 169.Fourcaud T., Zhang X., Stokes A., Lambers H., Körner C. 2008. Plant growth modelling and applications: The increasing importance of plant architecture in growth models. Ann. Bot. 101, 1053–1063 10.1093/aob/mcn050 (doi:10.1093/aob/mcn050) [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES