Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Aug;58(2):482–492. doi: 10.1172/JCI108492

The relationship between right duct lymph flow and extravascular lung water in dogs given alpha-naphthylthiourea.

M B Pine, P M Beach, T S Cottrell, M Scola, G M Turino
PMCID: PMC333203  PMID: 956379

Abstract

The relationship between right duct lymph flow and extravascular lung water was studied in 3 normal dogs and 15 dogs with pulmonary edema induced by alpha-naphthylthiourea (ANTU). Right duct lymph was collected in a pouch created by ligating jugular, subclavian, and brachiocephalic veins. Extravascular lung water was measured in vivo by double indicator dilution and post-mortem by weighting lungs before and after drying. Cardiac output, pulmonary artery and pulmonary artery wedge pressures, and the concentration of protein and electrolytes in plasma and right duct lymph were determined. Eight lungs were examined by light and electron microscopy. There was a direct relationship between right duct lymph flow (RDLF in milliters per hour per gram dry lung) and extravascular lung water (Qwl in milliliters per gram dry lung) which was best described by the equation RDLF=0.75-0.26 Qwl+0.03 (Qwl).2 Dogs with severe ANTU-induced edema had extensive lung capillary endothelial destruction but only mild interstitial swelling and no visible damage to type I alveolar epithelial cells. Cardiac output, pulmonary artery and wedge pressures, and protein and electrolyte concentrations did not correlate with either extravascular water or right duct flow. Thus, in ANTU-induced pulmonary edema right duct lymph flow was directly related to extravascular lung water with the highest flows occurring with severe edema. The absence of a rapid increase in lymph flow with small increases in extravascular water may be due to early sequestration of fluid in the alveolar space. Hemodynamic changes did not account for changes in lung water or lymph flow. The pulmonary interstitial factors relating increased extravascular water to lymph drainage remain to be determined.

Full text

PDF
483

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brigham K. L., Woolverton W. C., Blake L. H., Staub N. C. Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest. 1974 Oct;54(4):792–804. doi: 10.1172/JCI107819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHINARD F. P., ENNS T. Transcapillary pulmonary exchange of water in the dog. Am J Physiol. 1954 Aug;178(2):197–202. doi: 10.1152/ajplegacy.1954.178.2.197. [DOI] [PubMed] [Google Scholar]
  3. COURTICE F. C., SIMMONDS W. J. Absorption of fluids from the pleural cavities of rabbits and cats. J Physiol. 1949 Aug;109(1-2):117–130. doi: 10.1113/jphysiol.1949.sp004375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cameron G. R., Courtice F. C. The production and removal of oedema fluid in the lung after exposure to carbonyl chloride (phosgene). J Physiol. 1946 Sep 18;105(2):175–185. [PMC free article] [PubMed] [Google Scholar]
  5. Cottrell T. S., Levine O. R., Senior R. M., Wiener J., Spiro D., Fishman A. P. Electron microscopic alterations at the alveolar level in pulmonary edema. Circ Res. 1967 Dec;21(6):783–797. doi: 10.1161/01.res.21.6.783. [DOI] [PubMed] [Google Scholar]
  6. Courtice F. C., Phipps P. J. The absorption of fluids from the lungs. J Physiol. 1946 Sep 18;105(2):186–190. [PMC free article] [PubMed] [Google Scholar]
  7. Cunningham A. L., Hurley J. V. Alpha-naphthyl-thiourea-induced pulmonary oedema in the rat: a topographical and electron-microscope study. J Pathol. 1972 Jan;106(1):25–35. doi: 10.1002/path.1711060103. [DOI] [PubMed] [Google Scholar]
  8. Erdmann A. J., 3rd, Vaughan T. R., Jr, Brigham K. L., Woolverton W. C., Staub N. C. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ Res. 1975 Sep;37(3):271–284. doi: 10.1161/01.res.37.3.271. [DOI] [PubMed] [Google Scholar]
  9. Goresky C. A., Cronin R. F., Wangel B. E. Indicator dilution measurements of extravascular water in the lungs. J Clin Invest. 1969 Mar;48(3):487–501. doi: 10.1172/JCI106006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEEDS S. E., UHLEY H. N., SAMPSON J. J., FRIEDMAN M. A new method for measurement of lymph flow from the right duct in the dog. Am J Surg. 1959 Aug;98(2):211–216. doi: 10.1016/0002-9610(59)90066-2. [DOI] [PubMed] [Google Scholar]
  11. Levine O. R., Mellins R. B., Fishman A. P. Quantitative assessment of pulmonary edema. Circ Res. 1965 Nov;17(5):414–426. doi: 10.1161/01.res.17.5.414. [DOI] [PubMed] [Google Scholar]
  12. Meyer E. C., Ottaviano R. Pulmonary collateral lymph flow: detection using lymph oxygen tensions. J Appl Physiol. 1972 Jun;32(6):806–811. doi: 10.1152/jappl.1972.32.6.806. [DOI] [PubMed] [Google Scholar]
  13. Meyrick B., Miller J., Reid L. Pulmonary oedema induced by ANTU, or by high or low oxygen concentrations in rat--an electron microscopic study. Br J Exp Pathol. 1972 Aug;53(4):347–358. [PMC free article] [PubMed] [Google Scholar]
  14. PEARCE M. L., YAMASHITA J., BEAZELL J. MEASUREMENT OF PULMONARY EDEMA. Circ Res. 1965 May;16:482–488. doi: 10.1161/01.res.16.5.482. [DOI] [PubMed] [Google Scholar]
  15. RABIN E. R., MEYER E. C. Cardiopulmonary effects of pulmonary venous hypertension with special reference to pulmonary lymphatic flow. Circ Res. 1960 Mar;8:324–335. doi: 10.1161/01.res.8.2.324. [DOI] [PubMed] [Google Scholar]
  16. RICHTER C. P. The physiology and cytology of pulmonary edema and pleural effusion produced in rats by alpha-naphthyl thiourea (ANTU). J Thorac Surg. 1952 Jan;23(1):66–91. [PubMed] [Google Scholar]
  17. SAID S. I., DAVIS R. K., BANERJEE C. M. PULMONARY LYMPH: DEMONSTRATION OF ITS HIGH OXYGEN TENSION RELATIVE TO SYSTEMIC LYMPH. Proc Soc Exp Biol Med. 1965 May;119:12–14. doi: 10.3181/00379727-119-30084. [DOI] [PubMed] [Google Scholar]
  18. SKEGGS L. T., Jr, HOCHSTRASSER H. MULTIPLE AUTOMATIC SEQUENTIAL ANALYSIS. Clin Chem. 1964 Oct;10:918–936. [PubMed] [Google Scholar]
  19. STEWART P. B., BURGEN A. S. The turnover of fluid in the dog's pleural cavity. J Lab Clin Med. 1958 Aug;52(2):212–230. [PubMed] [Google Scholar]
  20. Starling E. H. On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol. 1896 May 5;19(4):312–326. doi: 10.1113/jphysiol.1896.sp000596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Starling E. H., Tubby A. H. On Absorption from and Secretion into the Serous Cavities. J Physiol. 1894 Mar 22;16(1-2):140–155. doi: 10.1113/jphysiol.1894.sp000496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor A. E., Gibson W. H., Granger H. J., Guyton A. C. The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology. 1973 Dec;6(4):192–208. [PubMed] [Google Scholar]
  23. Teplitz C. The ultrastructural basis for pulmonary pathophysiology following trauma. Pathogenesis of pulmonary edema. J Trauma. 1968 Sep;8(5):700–714. doi: 10.1097/00005373-196809000-00009. [DOI] [PubMed] [Google Scholar]
  24. UHLEY H. N., LEEDS S. E., SAMPSON J. J., FRIEDMAN M. Right duct lymph flow in dogs measured by a new method. Dis Chest. 1960 May;37:532–534. doi: 10.1378/chest.37.5.532. [DOI] [PubMed] [Google Scholar]
  25. UHLEY H. N., LEEDS S. E., SAMPSON J. J., FRIEDMAN M. Role of pulmonary lymphatics in chronic pulmonary edema. Circ Res. 1962 Dec;11:966–970. doi: 10.1161/01.res.11.6.966. [DOI] [PubMed] [Google Scholar]
  26. UHLEY H., LEEDS S. E., SAMPSON J. J., FRIEDMAN M. Some observations on the role of the lymphatics in experimental acute pulmonary edema. Circ Res. 1961 May;9:688–693. doi: 10.1161/01.res.9.3.688. [DOI] [PubMed] [Google Scholar]
  27. Uhley H. N., Leeds S. E., Sampson J. J., Friedman M. Right duct lymph flow in experimental heart failure following acute elevation of left atrial pressure. Circ Res. 1967 Mar;20(3):306–310. doi: 10.1161/01.res.20.3.306. [DOI] [PubMed] [Google Scholar]
  28. Uhley H. N., Leeds S. E., Sampson J. J., Rudo N., Friedman M. The temporal sequence of lymph flow in the right lymphatic duct in experimental chronic pulmonary edema. Am Heart J. 1966 Aug;72(2):214–217. doi: 10.1016/0002-8703(66)90445-5. [DOI] [PubMed] [Google Scholar]
  29. Ullal S. R., Kluge T. H., Kerth W. J., Gerbode F. Changes in cardiac lymph of dogs during and after anoxia. Ann Surg. 1972 Apr;175(4):472–478. doi: 10.1097/00000658-197204000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ullal S. R., Kluge T. H., Kerth W. J., Gerbode F. Flow and composition of cardiac lymph in dogs. Ann Surg. 1972 Mar;175(3):299–304. doi: 10.1097/00000658-197203000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES