Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Feb 25;19(4):829–832. doi: 10.1093/nar/19.4.829

Enzymatic cleavage of a bacterial chromosome at a transposon-inserted rare site.

J Hanish 1, M McClelland 1
PMCID: PMC333718  PMID: 1850125

Abstract

The sequential use of the methylase M.Xbal (5'.TCTAGm6A) and the methylation-dependent endonuclease Dpnl (5'-Gm6A decreases TC) results in cleavage at 5'.TCTAGA decreases TCTAGA. This recognition sequence was introduced into a transposon derived from the Mu bacteriophage and transposed into the genome of the bacterium Salmonella typhimurium. M.Xbal methylation was provided in vivo by a plasmid containing the M.Xbal gene and the S. typhimurium genome was cleaved to completion by Dpnl at one or more sites, depending on the number of transposon insertions. The resulting genomic fragments were resolved by pulsed-field electrophoresis. The potential use of single M.Xbal/Dpnl cleavage sites as reference positions to map rare restriction sites is discussed.

Full text

PDF
829

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen C. H., Sigman D. S. Chemical conversion of a DNA-binding protein into a site-specific nuclease. Science. 1987 Sep 4;237(4819):1197–1201. doi: 10.1126/science.2820056. [DOI] [PubMed] [Google Scholar]
  3. Dujon B., Belfort M., Butow R. A., Jacq C., Lemieux C., Perlman P. S., Vogt V. M. Mobile introns: definition of terms and recommended nomenclature. Gene. 1989 Oct 15;82(1):115–118. doi: 10.1016/0378-1119(89)90035-8. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Gardiner K., Laas W., Patterson D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat Cell Mol Genet. 1986 Mar;12(2):185–195. doi: 10.1007/BF01560665. [DOI] [PubMed] [Google Scholar]
  6. Grindley N. D., Reed R. R. Transpositional recombination in prokaryotes. Annu Rev Biochem. 1985;54:863–896. doi: 10.1146/annurev.bi.54.070185.004243. [DOI] [PubMed] [Google Scholar]
  7. Hanish J., McClelland M. Activity of DNA modification and restriction enzymes in KGB, a potassium glutamate buffer. Gene Anal Tech. 1988 Sep-Oct;5(5):105–107. doi: 10.1016/0735-0651(88)90005-2. [DOI] [PubMed] [Google Scholar]
  8. Hanish J., McClelland M. Controlled partial restriction digestions of DNA by competition with modification methyltransferases. Anal Biochem. 1989 Jun;179(2):357–360. doi: 10.1016/0003-2697(89)90144-9. [DOI] [PubMed] [Google Scholar]
  9. Hanish J., McClelland M. Methylase-limited partial NotI cleavage for physical mapping of genomic DNA. Nucleic Acids Res. 1990 Jun 11;18(11):3287–3291. doi: 10.1093/nar/18.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heitman J., Model P. Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J Bacteriol. 1987 Jul;169(7):3243–3250. doi: 10.1128/jb.169.7.3243-3250.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koob M., Grimes E., Szybalski W. Conferring operator specificity on restriction endonucleases. Science. 1988 Aug 26;241(4869):1084–1086. doi: 10.1126/science.2842862. [DOI] [PubMed] [Google Scholar]
  12. Lacks S., Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. J Biol Chem. 1975 Jun 10;250(11):4060–4066. [PubMed] [Google Scholar]
  13. Lacks S., Greenberg B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol. 1977 Jul;114(1):153–168. doi: 10.1016/0022-2836(77)90289-3. [DOI] [PubMed] [Google Scholar]
  14. Maher L. J., 3rd, Wold B., Dervan P. B. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science. 1989 Aug 18;245(4919):725–730. doi: 10.1126/science.2549631. [DOI] [PubMed] [Google Scholar]
  15. McClelland M., Jones R., Patel Y., Nelson M. Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res. 1987 Aug 11;15(15):5985–6005. doi: 10.1093/nar/15.15.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McClelland M., Kessler L. G., Bittner M. Site-specific cleavage of DNA at 8- and 10-base-pair sequences. Proc Natl Acad Sci U S A. 1984 Feb;81(4):983–987. doi: 10.1073/pnas.81.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McClelland M., Nelson M. Enhancement of the apparent cleavage specificities of restriction endonucleases: applications to megabase mapping of chromosomes. Gene Amplif Anal. 1987;5:257–282. [PubMed] [Google Scholar]
  18. McClelland M., Nelson M. The 5'-GGATCC-3' cleavage specificity of BamHI is increased to 5'-CCGGATCCGG-3' by sequential double methylation with M.HpaII and M.BamHI. Gene. 1988 Dec 25;74(1):169–176. doi: 10.1016/0378-1119(88)90278-8. [DOI] [PubMed] [Google Scholar]
  19. Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
  20. Nelson M., McClelland M. The effect of site-specific methylation on restriction-modification enzymes. Nucleic Acids Res. 1987;15 (Suppl):r219–r230. doi: 10.1093/nar/15.suppl.r219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patel Y., Van Cott E., Wilson G. G., McClelland M. Cleavage at the twelve-base-pair sequence 5'-TCTAGATCTAGA-3' using M.Xbal (TCTAGm6A) methylation and DpnI (Gm6A/TC) cleavage. Nucleic Acids Res. 1990 Mar 25;18(6):1603–1607. doi: 10.1093/nar/18.6.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pósfai G., Kiss A., Erdei S., Pósfai J., Venetianer P. Structure of the Bacillus sphaericus R modification methylase gene. J Mol Biol. 1983 Nov 5;170(3):597–610. doi: 10.1016/s0022-2836(83)80123-5. [DOI] [PubMed] [Google Scholar]
  23. Pósfai G., Szybalski W. Increasing the Fokl cleavage specificity from 5 to 7 base pairs by two-step methylation. Nucleic Acids Res. 1988 Jul 11;16(13):6245–6245. doi: 10.1093/nar/16.13.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raleigh E. A., Murray N. E., Revel H., Blumenthal R. M., Westaway D., Reith A. D., Rigby P. W., Elhai J., Hanahan D. McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 1988 Feb 25;16(4):1563–1575. doi: 10.1093/nar/16.4.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ratet P., Richaud F. Construction and uses of a new transposable element whose insertion is able to produce gene fusions with the neomycin-phosphotransferase-coding region of Tn903. Gene. 1986;42(2):185–192. doi: 10.1016/0378-1119(86)90295-7. [DOI] [PubMed] [Google Scholar]
  26. Ratet P., Schell J., de Bruijn F. J. Mini-Mulac transposons with broad-host-range origins of conjugal transfer and replication designed for gene regulation studies in Rhizobiaceae. Gene. 1988;63(1):41–52. doi: 10.1016/0378-1119(88)90544-6. [DOI] [PubMed] [Google Scholar]
  27. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  28. Smith C. L., Econome J. G., Schutt A., Klco S., Cantor C. R. A physical map of the Escherichia coli K12 genome. Science. 1987 Jun 12;236(4807):1448–1453. doi: 10.1126/science.3296194. [DOI] [PubMed] [Google Scholar]
  29. Smith C. L., Kolodner R. D. Mapping of Escherichia coli chromosomal Tn5 and F insertions by pulsed field gel electrophoresis. Genetics. 1988 Jun;119(2):227–236. doi: 10.1093/genetics/119.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith H. O., Birnstiel M. L. A simple method for DNA restriction site mapping. Nucleic Acids Res. 1976 Sep;3(9):2387–2398. doi: 10.1093/nar/3.9.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Cott E. M., Wilson G. G. Cloning the FnuDI, NaeI, NcoI and XbaI restriction-modification systems. Gene. 1988 Dec 25;74(1):55–59. doi: 10.1016/0378-1119(88)90251-x. [DOI] [PubMed] [Google Scholar]
  32. Ventra L., Weiss A. S. Transposon-mediated restriction mapping of the Bacillus subtilis chromosome. Gene. 1989 May 15;78(1):29–36. doi: 10.1016/0378-1119(89)90311-9. [DOI] [PubMed] [Google Scholar]
  33. Weil M. D., McClelland M. Enzymatic cleavage of a bacterial genome at a 10-base-pair recognition site. Proc Natl Acad Sci U S A. 1989 Jan;86(1):51–55. doi: 10.1073/pnas.86.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES