Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Oct 11;20(19):5079–5084. doi: 10.1093/nar/20.19.5079

Nonenzymatic hydrolysis of oligoribonucleotides.

R Kierzek 1
PMCID: PMC334287  PMID: 1408824

Abstract

Selective cleavage of phosphodiester bonds in RNA is important in the processing of large RNA molecules. This paper reports specific cleavage at UA sequences in single stranded oligoribonucleotides as short as hexamers. The hydrolysis between U and A leaves a 2',3'-cyclic phosphate on the 5'-side and a 5'-hydroxyl group on the 3' side of the cleavage. The hydrolysis is promoted by a wide range of cofactors, including polymeric organic compounds such as polyvinylpyrrolydone (PVP) and by proteins. A variety of experiments suggests the cleavage is not due to contamination by ribonuclease. The rate of cleavage is a function of oligoribonucleotide, PVP and spermidine concentrations. Mg2+ is not required. The phenomenon described here can potentially provide a relatively simple way of coding chemical stability into single stranded RNA based on its sequence and structure. This process seems to be similar to that involved in post-transcriptional degradation of mRNA.

Full text

PDF
5084

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brehm S. L., Cech T. R. Fate of an intervening sequence ribonucleic acid: excision and cyclization of the Tetrahymena ribosomal ribonucleic acid intervening sequence in vivo. Biochemistry. 1983 May 10;22(10):2390–2397. doi: 10.1021/bi00279a014. [DOI] [PubMed] [Google Scholar]
  2. Cannistraro V. J., Subbarao M. N., Kennell D. Specific endonucleolytic cleavage sites for decay of Escherichia coli mRNA. J Mol Biol. 1986 Nov 20;192(2):257–274. doi: 10.1016/0022-2836(86)90363-3. [DOI] [PubMed] [Google Scholar]
  3. Cech T. R., Bass B. L. Biological catalysis by RNA. Annu Rev Biochem. 1986;55:599–629. doi: 10.1146/annurev.bi.55.070186.003123. [DOI] [PubMed] [Google Scholar]
  4. Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
  5. Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ebeling W., Hennrich N., Klockow M., Metz H., Orth H. D., Lang H. Proteinase K from Tritirachium album Limber. Eur J Biochem. 1974 Aug 15;47(1):91–97. doi: 10.1111/j.1432-1033.1974.tb03671.x. [DOI] [PubMed] [Google Scholar]
  7. Forster A. C., Symons R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell. 1987 Apr 24;49(2):211–220. doi: 10.1016/0092-8674(87)90562-9. [DOI] [PubMed] [Google Scholar]
  8. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jaeger J. A., Zuker M., Turner D. H. Melting and chemical modification of a cyclized self-splicing group I intron: similarity of structures in 1 M Na+, in 10 mM Mg2+, and in the presence of substrate. Biochemistry. 1990 Nov 6;29(44):10147–10158. doi: 10.1021/bi00496a002. [DOI] [PubMed] [Google Scholar]
  10. Kierzek R., Caruthers M. H., Longfellow C. E., Swinton D., Turner D. H., Freier S. M. Polymer-supported RNA synthesis and its application to test the nearest-neighbor model for duplex stability. Biochemistry. 1986 Dec 2;25(24):7840–7846. doi: 10.1021/bi00372a009. [DOI] [PubMed] [Google Scholar]
  11. Kole R., Altman S. Reconstitution of RNase P activity from inactive RNA and protein. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3795–3799. doi: 10.1073/pnas.76.8.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee C. H., Tinoco I., Jr Conformation studies of 13 trinucleoside diphosphates by 360 MHz PMR spectroscopy. A bulged base conformation. I. Base protons and H1' protons. Biophys Chem. 1980 Apr;11(2):283–294. doi: 10.1016/0301-4622(80)80031-7. [DOI] [PubMed] [Google Scholar]
  13. Lerner J., Dougherty T. M., Schepartz A. I. Selectivity properties of poly-N-vinyl pyrrolidone in column chromatography of nucleotides, their derivatives, and related compounds: a preliminary report. J Chromatogr. 1968 Oct 22;37(3):453–457. doi: 10.1016/s0021-9673(01)99140-x. [DOI] [PubMed] [Google Scholar]
  14. MARKHAM R., SMITH J. D. The structure of ribonucleic acid. I. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem J. 1952 Dec;52(4):552–557. doi: 10.1042/bj0520552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McLennan B. D., Lane B. G. The chain termini of polynucleotides formed by limited enzymic fragmentation of wheat embryo ribosomal RNA. 2. Studies of a snake venom ribonuclease and pancreas ribonuclease. Can J Biochem. 1968 Jan;46(1):93–107. doi: 10.1139/o68-014. [DOI] [PubMed] [Google Scholar]
  16. Scheele G., Blackburn P. Role of mammalian RNase inhibitor in cell-free protein synthesis. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4898–4902. doi: 10.1073/pnas.76.10.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stone M. P., Winkle S. A., Borer P. N. 13C-NMR of ribosyl ApApA, ApApG and ApUpG. J Biomol Struct Dyn. 1986 Feb;3(4):767–781. doi: 10.1080/07391102.1986.10508460. [DOI] [PubMed] [Google Scholar]
  18. Surratt C. K., Milan S. C., Chamberlin M. J. Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7983–7987. doi: 10.1073/pnas.88.18.7983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sussman J. L., Seeman N. C., Kim S. H., Berman H. M. Crystal structure of a naturally occurring dinucleoside phoaphate: uridylyl 3',5'-adenosine phosphate model for RNA chain folding. J Mol Biol. 1972 May 28;66(3):403–421. doi: 10.1016/0022-2836(72)90423-8. [DOI] [PubMed] [Google Scholar]
  20. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  21. Watson N., Gurevitz M., Ford J., Apirion D. Self cleavage of a precursor RNA from bacteriophage T4. J Mol Biol. 1984 Jan 25;172(3):301–323. doi: 10.1016/s0022-2836(84)80028-5. [DOI] [PubMed] [Google Scholar]
  22. van den Hoogen Y. T., Erkelens C., de Vroom E., van der Marel G. A., van Boom J. H., Altona C. Influence of uracil on the conformational behaviour of RNA oligonucleotides in solution. Eur J Biochem. 1988 Apr 15;173(2):295–303. doi: 10.1111/j.1432-1033.1988.tb13998.x. [DOI] [PubMed] [Google Scholar]
  23. van den Hoogen Y. T., van Beuzekom A. A., de Vroom E., van der Marel G. A., van Boom J. H., Altona C. Bulge-out structures in the single-stranded trimer AUA and in the duplex (CUGGUGCGG).(CCGCCCAG). A model-building and NMR study. Nucleic Acids Res. 1988 Jun 10;16(11):5013–5030. doi: 10.1093/nar/16.11.5013. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES