Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Oct 11;20(19):5127–5130. doi: 10.1093/nar/20.19.5127

Modified DNA fragments activate NaeI cleavage of refractory DNA sites.

M Conrad 1, M D Topal 1
PMCID: PMC334294  PMID: 1408827

Abstract

Endonuclease NaeI cleaves DNA using a two-site mechanism. The DNA-binding sites are nonidentical: they recognize different families of flanking sequences. A unique NaeI site that is resistant to cleavage resides in M13 double-stranded DNA. NaeI can be activated to cleave this site by small DNA fragments containing one or more NaeI sites. These activators are not practical for genetic engineering because unphosphorylated activators that are consumed during the cleavage of substrate give ends that may interfere with subsequent ligations. We show that a DNA fragment containing phosphorothioate linkages at the NaeI scissile bonds (S-activator) is not cleaved by NaeI, even though this S-activator binds to the substrate site. The S-activator activates NaeI to cleave M13 DNA under conditions that completely exhaust unsubstituted activator. These results demonstrate that activation is not coupled to cleavage of activator, that NaeI reverts to its inactive state soon after dissociation of the EA complex, and that S-activator makes for a nondepletable activator during prolonged incubations.

Full text

PDF
5129

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Connolly B. A., Potter B. V., Eckstein F., Pingoud A., Grotjahn L. Synthesis and characterization of an octanucleotide containing the EcoRI recognition sequence with a phosphorothioate group at the cleavage site. Biochemistry. 1984 Jul 17;23(15):3443–3453. doi: 10.1021/bi00310a010. [DOI] [PubMed] [Google Scholar]
  2. Conrad M., Topal M. D. DNA and spermidine provide a switch mechanism to regulate the activity of restriction enzyme Nae I. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9707–9711. doi: 10.1073/pnas.86.24.9707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi: 10.1146/annurev.bi.54.070185.002055. [DOI] [PubMed] [Google Scholar]
  4. Krüger D. H., Barcak G. J., Reuter M., Smith H. O. EcoRII can be activated to cleave refractory DNA recognition sites. Nucleic Acids Res. 1988 May 11;16(9):3997–4008. doi: 10.1093/nar/16.9.3997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Oller A. R., Vanden Broek W., Conrad M., Topal M. D. Ability of DNA and spermidine to affect the activity of restriction endonucleases from several bacterial species. Biochemistry. 1991 Mar 5;30(9):2543–2549. doi: 10.1021/bi00223a035. [DOI] [PubMed] [Google Scholar]
  7. Olsen D. B., Eckstein F. High-efficiency oligonucleotide-directed plasmid mutagenesis. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1451–1455. doi: 10.1073/pnas.87.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pein C. D., Reuter M., Meisel A., Cech D., Krüger D. H. Activation of restriction endonuclease EcoRII does not depend on the cleavage of stimulator DNA. Nucleic Acids Res. 1991 Oct 11;19(19):5139–5142. doi: 10.1093/nar/19.19.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Taylor J. W., Schmidt W., Cosstick R., Okruszek A., Eckstein F. The use of phosphorothioate-modified DNA in restriction enzyme reactions to prepare nicked DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8749–8764. doi: 10.1093/nar/13.24.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Topal M. D., Thresher R. J., Conrad M., Griffith J. NaeI endonuclease binding to pBR322 DNA induces looping. Biochemistry. 1991 Feb 19;30(7):2006–2010. doi: 10.1021/bi00221a038. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES