Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jan;73(1):73–76. doi: 10.1073/pnas.73.1.73

A ribosome-dependent GTPase from yeast distinct from elongation factor 2.

L Skogerson, E Wakatama
PMCID: PMC335841  PMID: 174100

Abstract

Three proteins required for poly(U)-directed polyphenylalanine synthesis have been separated from yeast. Two of the factors correspond to the elongation factors 1 and 2 described for other eukaryotic systems, according to the criteria of phenylalanyl-tRNA binding and diphtheria toxin-catalyzed ADP-ribosylation. The third protein, while absolutely required for polyphenylalanine synthesis, was a more active ribosome-dependent GTPase than elongation factor 2.

Full text

PDF
76

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenblum I., Chain E. Studies on the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):286–294. doi: 10.1042/bj0320286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caskey T., Leder P., Moldave K., Schlessinger D. Translation: its mechanism and control. Science. 1972 Apr 14;176(4031):195–197. doi: 10.1126/science.176.4031.195. [DOI] [PubMed] [Google Scholar]
  3. Collier R. J. Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol. 1967 Apr 14;25(1):83–98. doi: 10.1016/0022-2836(67)90280-x. [DOI] [PubMed] [Google Scholar]
  4. Felicetti L., Lipmann F. Comparison of amino acid polymerization factors isolated from rat liver and rabbit reticulocytes. Arch Biochem Biophys. 1968 May;125(2):548–557. doi: 10.1016/0003-9861(68)90613-9. [DOI] [PubMed] [Google Scholar]
  5. Goor R. S., Pappenheimer A. M., Jr Studies on the mode of action of diphtheria toxin. IV. Specificity of the cofactor (NAD) requirement for toxin action in cell-free systems. J Exp Med. 1967 Nov 1;126(5):913–921. doi: 10.1084/jem.126.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
  7. Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Honjo T., Nishizuka Y., Hayaishi O. Adenosine diphosphoribosylation of aminoacyl transferase II by diphtheria toxin. Cold Spring Harb Symp Quant Biol. 1969;34:603–608. doi: 10.1101/sqb.1969.034.01.069. [DOI] [PubMed] [Google Scholar]
  9. Honjo T., Nishizuka Y., Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem. 1968 Jun 25;243(12):3553–3555. [PubMed] [Google Scholar]
  10. Kaziro Y., Inoue N., Kuriki Y., Mizumoto K., Tanaka M., Kawakita M. Purification and properties of factor G. Cold Spring Harb Symp Quant Biol. 1969;34:385–393. doi: 10.1101/sqb.1969.034.01.045. [DOI] [PubMed] [Google Scholar]
  11. Kurland C. G. Structure and function of the bacterial ribosome. Annu Rev Biochem. 1972;41(10):377–408. doi: 10.1146/annurev.bi.41.070172.002113. [DOI] [PubMed] [Google Scholar]
  12. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  13. Malkin M., Lipmann F. Fusidic acid: inhibition of factor T2 in reticulocyte protein synthesis. Science. 1969 Apr 4;164(3875):71–72. doi: 10.1126/science.164.3875.71. [DOI] [PubMed] [Google Scholar]
  14. Moldave K., Galasinski W., Rao P., Siler J. Studies on the peptidyl tRNA translocase from rat liver. Cold Spring Harb Symp Quant Biol. 1969;34:347–356. doi: 10.1101/sqb.1969.034.01.041. [DOI] [PubMed] [Google Scholar]
  15. Pestka S. Studies on the formation of trensfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis. Proc Natl Acad Sci U S A. 1968 Oct;61(2):726–733. doi: 10.1073/pnas.61.2.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raeburn S., Collins J. F., Moon H. M., Maxwell E. S. Aminoacyltransferase II from rat liver. I. Purification and enzymatic properties. J Biol Chem. 1971 Feb 25;246(4):1041–1048. [PubMed] [Google Scholar]
  17. Richter D. Formation of a ternary complex between yeast aminoacyl-tRNA binding factor, GTP, and aminoacyl-tRNA. Biochem Biophys Res Commun. 1970 Mar 12;38(5):864–870. doi: 10.1016/0006-291x(70)90800-4. [DOI] [PubMed] [Google Scholar]
  18. Schneider J. A., Raeburn S., Maxwell E. S. Translocase activity in the aminoacyl transferase II fraction from rat liver. Biochem Biophys Res Commun. 1968 Oct 10;33(1):177–181. doi: 10.1016/0006-291x(68)90275-1. [DOI] [PubMed] [Google Scholar]
  19. Skogerson L., McLaughlin C., Wakatama E. Modification of ribosomes in cryptopleurine-resistant mutants of yeast. J Bacteriol. 1973 Nov;116(2):818–822. doi: 10.1128/jb.116.2.818-822.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
  21. Tanaka N., Nishimura T., Kinoshita T. Inhibition by fusidic acid of transferase II in reticulocyte protein synthesis. J Biochem. 1970 Mar;67(3):459–463. doi: 10.1093/oxfordjournals.jbchem.a129268. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES