Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jan;73(1):82–85. doi: 10.1073/pnas.73.1.82

Transduction of chemical into electrical energy.

D Nachmansohn
PMCID: PMC335843  PMID: 1061129

Abstract

The paper recalls some fundamental notions, developed by Otto Meyerhof, which were used in the analysis of the transduction of chemical into mechanical energy during muscular contraction. These notions formed the basis of the approach to the analysis of the transduction of chemical into electrical energy, i.e., the very principle underlying nerve and muscle excitability and bioelectricity. Instrumental for this purpose was the use, since 1937, of electric organs of fish, a tissue highly specialized for bioelectrogenesis.

Full text

PDF
85

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brzin M. The localization of acetylcholinesterase in axonal membranes of frog nerve fibers. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1560–1563. doi: 10.1073/pnas.56.5.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chang H. W. Purification and characterization of acetylcholine receptor-I from Electrophorus electricus. Proc Natl Acad Sci U S A. 1974 May;71(5):2113–2117. doi: 10.1073/pnas.71.5.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dubois D. M., Schoffeniels E. A molecular model of action potentials. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2858–2862. doi: 10.1073/pnas.71.7.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dubois D. M., Schoffeniels E. Molecular model of postsynaptic potential. Proc Natl Acad Sci U S A. 1975 May;72(5):1749–1752. doi: 10.1073/pnas.72.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Koelle G. B. Current concepts of synaptic structure and function. Ann N Y Acad Sci. 1971 Sep 15;183:5–20. doi: 10.1111/j.1749-6632.1971.tb30738.x. [DOI] [PubMed] [Google Scholar]
  6. NACHMANSOHN D. Metabolism and function of the nerve cell. Harvey Lect. 1953;49:57–99. [PubMed] [Google Scholar]
  7. Neumann E., Katchalsky A. Long-lived conformation changes induced by electric impulses in biopolymers. Proc Natl Acad Sci U S A. 1972 Apr;69(4):993–997. doi: 10.1073/pnas.69.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Neumann E., Nachmansohn D., Katchalsky A. An attempt at an integral interpretation of nerve excitability. Proc Natl Acad Sci U S A. 1973 Mar;70(3):727–731. doi: 10.1073/pnas.70.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Revzin A., Neumann E. Conformation changes in rRNA induced by electric impulses. Biophys Chem. 1974 Aug;2(2):144–150. doi: 10.1016/0301-4622(74)80034-7. [DOI] [PubMed] [Google Scholar]
  10. Sjöstrand F. S., Baraas L. A new model for mitochondrial membranes based on structural and on biochemical information. J Ultrastruct Res. 1970 Aug;32(3):293–306. doi: 10.1016/s0022-5320(70)80010-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES