Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Mar;73(3):809–812. doi: 10.1073/pnas.73.3.809

DNA strand breaks, repair, and survival in x-irradiated mammalian cells.

D L Dugle, C J Gillespie, J D Chapman
PMCID: PMC336008  PMID: 1062792

Abstract

The yields of unrepairable single-and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand remoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break.

Full text

PDF
811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chadwick K. H., Leenhouts H. P. A molecular theory of cell survival. Phys Med Biol. 1973 Jan;18(1):78–87. doi: 10.1088/0031-9155/18/1/007. [DOI] [PubMed] [Google Scholar]
  2. Chapman J. D., Todd P., Sturrock J. X-ray survival of cultured Chinese hamster cells resuming growth after plateau phase. Radiat Res. 1970 Jun;42(3):590–600. [PubMed] [Google Scholar]
  3. Coquerelle T., Bopp A., Kessler B., Hagen U. Strand breaks and K' end-groups in DNA of irradiated thymocytes. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Oct;24(4):397–404. doi: 10.1080/09553007314551251. [DOI] [PubMed] [Google Scholar]
  4. Corry P. M., Cole A. Double strand rejoining in mammalian DNA. Nat New Biol. 1973 Sep 26;245(143):100–101. [PubMed] [Google Scholar]
  5. Corry P. M., Cole A. Radiation-induced double-strand scission of the DNA of mammalian metaphase chromosomes. Radiat Res. 1968 Dec;36(3):528–543. [PubMed] [Google Scholar]
  6. Donlon T., Norman A. Kinetics of rejoining of single-strand breaks induced by ionizing radiation in DNA of human lymphocytes. Mutat Res. 1971 Oct;13(2):97–107. doi: 10.1016/0027-5107(71)90001-7. [DOI] [PubMed] [Google Scholar]
  7. Elkind M. M., Chang-Liu C. M. Repair of a DNA complex from x-irradiated Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Jul;22(1):75–90. doi: 10.1080/09553007214550801. [DOI] [PubMed] [Google Scholar]
  8. Elkind M. M., Kamper C. Two forms of repair of DNA in mammalian cells following irradiation. Biophys J. 1970 Mar;10(3):237–245. doi: 10.1016/S0006-3495(70)86296-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elkind M. M. Sedimentation of DNA released from Chinese hamster cells. Biophys J. 1971 Jun;11(6):502–520. doi: 10.1016/S0006-3495(71)86231-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fox W., Fox M. DNA single-strand rejoining in two pairs of cell-lines showing the same and different sensitivities to x-rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Aug;24(2):127–135. doi: 10.1080/09553007314550921. [DOI] [PubMed] [Google Scholar]
  11. Gillespie C. J., Gislason G. S., Dugle D. L., Chapman J. D. Random break analysis of DNA sedimentation profiles. Radiat Res. 1972 Aug;51(2):272–279. [PubMed] [Google Scholar]
  12. Horikawa M., Fukuhara M., Suzuki F., Nikaido O., Sugahara T. Comparative studies on induction and rejoining of DNA single-strand breaks by radiation and chemical carcinogen in mammalian cells in vitro. Exp Cell Res. 1972 Feb;70(2):349–359. doi: 10.1016/0014-4827(72)90146-2. [DOI] [PubMed] [Google Scholar]
  13. Horikawa M., Nikaido O., Tanaka T., Nagata H., Sugahara T. Comparative studies on rejoining of DNA-strand breaks induced by x-irradiation in mammalian cell lines in vitro. Exp Cell Res. 1970 Dec;63(2):325–332. doi: 10.1016/0014-4827(70)90220-x. [DOI] [PubMed] [Google Scholar]
  14. Humphrey R. M., Steward D. L., Sedita B. A. DNA-strand breaks and rejoining following exposure of synchronized Chinese hamster cells to ionizing radiations. Mutat Res. 1968 Nov-Dec;6(3):459–465. doi: 10.1016/0027-5107(68)90063-8. [DOI] [PubMed] [Google Scholar]
  15. Kellerer A. M., Rossi H. H. RBE and the primary mechanism of radiation action. Radiat Res. 1971 Jul;47(1):15–34. [PubMed] [Google Scholar]
  16. Kohn K. W., Grimek-Ewig R. A. Alkaline elution analysis, a new approach to the study of DNA single-strand interruptions in cells. Cancer Res. 1973 Aug;33(8):1849–1853. [PubMed] [Google Scholar]
  17. Lee Y. C., Bennett L. R., Byfield J. E. Inhibition of repair of DNA single strand breaks in mouse leukemia cells by actinomycin D. Biochem Biophys Res Commun. 1972 Nov 1;49(3):758–765. doi: 10.1016/0006-291x(72)90476-7. [DOI] [PubMed] [Google Scholar]
  18. Lehmann A. R., Ormerod M. G. Double-strand breaks in the DNA of a mammalian cell after x-irradiation. Biochim Biophys Acta. 1970 Oct 15;217(2):268–277. doi: 10.1016/0005-2787(70)90526-5. [DOI] [PubMed] [Google Scholar]
  19. Lett J. T., Caldwell I., Dean C. J., Alexander P. Rejoining of x-ray induced breaks in the DNA of leukaemia cells. Nature. 1967 May 20;214(5090):790–792. doi: 10.1038/214790a0. [DOI] [PubMed] [Google Scholar]
  20. Lett J. T., Sun C. The production of strand breaks in mammalian DNA by X-rays: at different stages in the cell cycle. Radiat Res. 1970 Dec;44(3):771–787. [PubMed] [Google Scholar]
  21. Lohman P. H. Induction and rejoining of breaks in the deoxyribonucleic acid of human cells irradiated at various phases of the cell cycle. Mutat Res. 1968 Nov-Dec;6(3):449–458. doi: 10.1016/0027-5107(68)90062-6. [DOI] [PubMed] [Google Scholar]
  22. Matsudaira H., Nakagawa C., Bannai S. Rejoining of x-ray-induced breaks in the DNA of Ehrlich ascites-tumour cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1969;15(6):575–581. doi: 10.1080/09553006914550881. [DOI] [PubMed] [Google Scholar]
  23. Matsudaira H., Nakagawa C., Hishizawa T. Rejoining of X-ray induced breaks in the DNA of Ehrlich ascites tumour cells in vivo. Int J Radiat Biol Relat Stud Phys Chem Med. 1969 Feb 20;15(1):95–100. doi: 10.1080/09553006914550181. [DOI] [PubMed] [Google Scholar]
  24. Moss A. J., Jr, Dalrymple G. V., Sanders J. L., Wilkinson K. P., Nash J. C. Dinitrophenol inhibits the rejoining of radiation-induced DNA breaks by L-cells. Biophys J. 1971 Feb;11(2):158–174. doi: 10.1016/S0006-3495(71)86205-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ono T., Okada S. Estimation in vivo of DNA strand breaks and their rejoining in thymus and liver of mouse. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Mar;25(3):291–301. doi: 10.1080/09553007414550341. [DOI] [PubMed] [Google Scholar]
  26. Ormerod M. G., Stevens U. The rejoining of x-ray-induced strand breaks in the DNA of a murine lymphoma cell (L5178Y). Biochim Biophys Acta. 1971 Feb 25;232(1):72–82. doi: 10.1016/0005-2787(71)90492-8. [DOI] [PubMed] [Google Scholar]
  27. Peterson A. R., Fox B. W. Toxicity of tritiated thymidine in P388F lymphoma cells. II. Effects of DNA molecular weight. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19(3):237–246. doi: 10.1080/09553007114550341. [DOI] [PubMed] [Google Scholar]
  28. Sawada S., Okada S. Rejoining of single-strand breaks of DNA in cultured mammalian cells. Radiat Res. 1970 Jan;41(1):145–162. [PubMed] [Google Scholar]
  29. Tsuboi A., Terasima T. Rejoining of single breaks of DNA induced by x-rays in mammalian cells: effects of metabolic inhibitors. Mol Gen Genet. 1970;108(2):117–128. doi: 10.1007/BF02430518. [DOI] [PubMed] [Google Scholar]
  30. Veatch W., Okada S. Radiation-induced breaks of DNA in cultured mammalian cells. Biophys J. 1969 Mar;9(3):330–346. doi: 10.1016/S0006-3495(69)86390-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES