Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Oct 11;16(19):9097–9111. doi: 10.1093/nar/16.19.9097

Primary structure, developmentally regulated expression and potential duplication of the zebrafish homeobox gene ZF-21.

P R Njølstad 1, A Molven 1, I Hordvik 1, J Apold 1, A Fjose 1
PMCID: PMC338694  PMID: 2902580

Abstract

We report the molecular cloning and characterization of a cDNA derived from a zebrafish gene (ZF-21) related to the mouse homeobox containing gene Hox2.1. Interesting information about the differential conservation of various domains was gained from comparisons between the putative protein sequences from ZF-21 (275 amino acids) and Hox2.1 (279 aa). A separate DNA binding domain including the ZF-21 homeodomain and 36 additional flanking residues is completely identical to the C-terminal part of Hox2.1. As a consequence, these two mouse and zebrafish proteins must have identical DNA binding properties. A lower level of sequence identity between the N-terminal coding regions of ZF-21 and Hox2.1 reduces the total protein homology to 81%. However, short stretches of perfect homology in these N-terminals suggests that the essential biochemical functions are the same. As expected for true homologues, the ZF-21 and Hox2.1 genes also share extensive similarities with respect to non-coding sequences and temporal expression during embryogenesis. The finding of a potential ZF-21 duplication is discussed in relation to functional and evolutionary aspects of vertebrate homeobox genes.

Full text

PDF
9099

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brawerman G. Determinants of messenger RNA stability. Cell. 1987 Jan 16;48(1):5–6. doi: 10.1016/0092-8674(87)90346-1. [DOI] [PubMed] [Google Scholar]
  2. Bürglin T. R., Wright C. V., De Robertis E. M. Translational control in homoeobox mRNAs? Nature. 1987 Dec 24;330(6150):701–702. doi: 10.1038/330701c0. [DOI] [PubMed] [Google Scholar]
  3. Carrasco A. E., McGinnis W., Gehring W. J., De Robertis E. M. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell. 1984 Jun;37(2):409–414. doi: 10.1016/0092-8674(84)90371-4. [DOI] [PubMed] [Google Scholar]
  4. Cho K. W., Goetz J., Wright C. V., Fritz A., Hardwicke J., De Robertis E. M. Differential utilization of the same reading frame in a Xenopus homeobox gene encodes two related proteins sharing the same DNA-binding specificity. EMBO J. 1988 Jul;7(7):2139–2149. doi: 10.1002/j.1460-2075.1988.tb03053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clemens M. J. A potential role for RNA transcribed from B2 repeats in the regulation of mRNA stability. Cell. 1987 Apr 24;49(2):157–158. doi: 10.1016/0092-8674(87)90553-8. [DOI] [PubMed] [Google Scholar]
  6. Coleman K. G., Poole S. J., Weir M. P., Soeller W. C., Kornberg T. The invected gene of Drosophila: sequence analysis and expression studies reveal a close kinship to the engrailed gene. Genes Dev. 1987 Mar;1(1):19–28. doi: 10.1101/gad.1.1.19. [DOI] [PubMed] [Google Scholar]
  7. Desplan C., Theis J., O'Farrell P. H. The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature. 1985 Dec 19;318(6047):630–635. doi: 10.1038/318630a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eiken H. G., Njølstad P. R., Molven A., Fjose A. A zebrafish homeobox-containing gene with embryonic transcription. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1165–1171. doi: 10.1016/0006-291x(87)90530-4. [DOI] [PubMed] [Google Scholar]
  9. Fermi G. Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. J Mol Biol. 1975 Sep 15;97(2):237–256. doi: 10.1016/s0022-2836(75)80037-4. [DOI] [PubMed] [Google Scholar]
  10. Fibi M., Zink B., Kessel M., Colberg-Poley A. M., Labeit S., Lehrach H., Gruss P. Coding sequence and expression of the homeobox gene Hox 1.3. Development. 1988 Feb;102(2):349–359. doi: 10.1242/dev.102.2.349. [DOI] [PubMed] [Google Scholar]
  11. Fienberg A. A., Utset M. F., Bogarad L. D., Hart C. P., Awgulewitsch A., Ferguson-Smith A., Fainsod A., Rabin M., Ruddle F. H. Homeo box genes in murine development. Curr Top Dev Biol. 1987;23:233–256. doi: 10.1016/s0070-2153(08)60627-4. [DOI] [PubMed] [Google Scholar]
  12. Fjose A., Eiken H. G., Njølstad P. R., Molven A., Hordvik I. A zebrafish engrailed-like homeobox sequence expressed during embryogenesis. FEBS Lett. 1988 Apr 25;231(2):355–360. doi: 10.1016/0014-5793(88)80849-4. [DOI] [PubMed] [Google Scholar]
  13. Fjose A., McGinnis W. J., Gehring W. J. Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature. 1985 Jan 24;313(6000):284–289. doi: 10.1038/313284a0. [DOI] [PubMed] [Google Scholar]
  14. Fritz A., De Robertis E. M. Xenopus homeobox-containing cDNAs expressed in early development. Nucleic Acids Res. 1988 Feb 25;16(4):1453–1469. doi: 10.1093/nar/16.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gehring W. J. Homeo boxes in the study of development. Science. 1987 Jun 5;236(4806):1245–1252. doi: 10.1126/science.2884726. [DOI] [PubMed] [Google Scholar]
  16. Hanneman E., Trevarrow B., Metcalfe W. K., Kimmel C. B., Westerfield M. Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo. Development. 1988 May;103(1):49–58. doi: 10.1242/dev.103.1.49. [DOI] [PubMed] [Google Scholar]
  17. Harvey R. P., Melton D. A. Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos. Cell. 1988 Jun 3;53(5):687–697. doi: 10.1016/0092-8674(88)90087-6. [DOI] [PubMed] [Google Scholar]
  18. Harvey R. P., Tabin C. J., Melton D. A. Embryonic expression and nuclear localization of Xenopus homeobox (Xhox) gene products. EMBO J. 1986 Jun;5(6):1237–1244. doi: 10.1002/j.1460-2075.1986.tb04352.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoey T., Levine M. Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature. 1988 Apr 28;332(6167):858–861. doi: 10.1038/332858a0. [DOI] [PubMed] [Google Scholar]
  20. Joyner A. L., Martin G. R. En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev. 1987 Mar;1(1):29–38. doi: 10.1101/gad.1.1.29. [DOI] [PubMed] [Google Scholar]
  21. Kessel M., Gruss P. Open reading frames and translational control. Nature. 1988 Mar 10;332(6160):117–118. doi: 10.1038/332117c0. [DOI] [PubMed] [Google Scholar]
  22. Kessel M., Schulze F., Fibi M., Gruss P. Primary structure and nuclear localization of a murine homeodomain protein. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5306–5310. doi: 10.1073/pnas.84.15.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keynes R. J., Stern C. D. Mechanisms of vertebrate segmentation. Development. 1988 Jul;103(3):413–429. doi: 10.1242/dev.103.3.413. [DOI] [PubMed] [Google Scholar]
  24. Kimmel C. B., Warga R. M. Cell lineage and developmental potential of cells in the zebrafish embryo. Trends Genet. 1988 Mar;4(3):68–74. doi: 10.1016/0168-9525(88)90043-1. [DOI] [PubMed] [Google Scholar]
  25. Krumlauf R., Holland P. W., McVey J. H., Hogan B. L. Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. Development. 1987 Apr;99(4):603–617. doi: 10.1242/dev.99.4.603. [DOI] [PubMed] [Google Scholar]
  26. Laughon A., Scott M. P. Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins. Nature. 1984 Jul 5;310(5972):25–31. doi: 10.1038/310025a0. [DOI] [PubMed] [Google Scholar]
  27. Le Mouellic H., Condamine H., Brûlet P. Pattern of transcription of the homeo gene Hox-3.1 in the mouse embryo. Genes Dev. 1988 Jan;2(1):125–135. doi: 10.1101/gad.2.1.125. [DOI] [PubMed] [Google Scholar]
  28. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  29. Mavilio F., Simeone A., Giampaolo A., Faiella A., Zappavigna V., Acampora D., Poiana G., Russo G., Peschle C., Boncinelli E. Differential and stage-related expression in embryonic tissues of a new human homoeobox gene. Nature. 1986 Dec 18;324(6098):664–668. doi: 10.1038/324664a0. [DOI] [PubMed] [Google Scholar]
  30. McGinnis W., Garber R. L., Wirz J., Kuroiwa A., Gehring W. J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell. 1984 Jun;37(2):403–408. doi: 10.1016/0092-8674(84)90370-2. [DOI] [PubMed] [Google Scholar]
  31. McGinnis W., Hart C. P., Gehring W. J., Ruddle F. H. Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila. Cell. 1984 Oct;38(3):675–680. doi: 10.1016/0092-8674(84)90262-9. [DOI] [PubMed] [Google Scholar]
  32. McGinnis W., Levine M. S., Hafen E., Kuroiwa A., Gehring W. J. A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. 1984 Mar 29-Apr 4Nature. 308(5958):428–433. doi: 10.1038/308428a0. [DOI] [PubMed] [Google Scholar]
  33. Meijlink F., de Laaf R., Verrijzer P., Destrée O., Kroezen V., Hilkens J., Deschamps J. A mouse homeobox containing gene on chromosome 11: sequence and tissue-specific expression. Nucleic Acids Res. 1987 Sep 11;15(17):6773–6786. doi: 10.1093/nar/15.17.6773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mlodzik M., Fjose A., Gehring W. J. Isolation of caudal, a Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage. EMBO J. 1985 Nov;4(11):2961–2969. doi: 10.1002/j.1460-2075.1985.tb04030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Njølstad P. R., Molven A., Fjose A. A zebrafish homologue of the murine Hox-2.1 gene. FEBS Lett. 1988 Mar 28;230(1-2):25–30. doi: 10.1016/0014-5793(88)80634-3. [DOI] [PubMed] [Google Scholar]
  36. Odenwald W. F., Taylor C. F., Palmer-Hill F. J., Friedrich V., Jr, Tani M., Lazzarini R. A. Expression of a homeo domain protein in noncontact-inhibited cultured cells and postmitotic neurons. Genes Dev. 1987 Jul;1(5):482–496. doi: 10.1101/gad.1.5.482. [DOI] [PubMed] [Google Scholar]
  37. Poole S. J., Kauvar L. M., Drees B., Kornberg T. The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell. 1985 Jan;40(1):37–43. doi: 10.1016/0092-8674(85)90306-x. [DOI] [PubMed] [Google Scholar]
  38. Regulski M., Harding K., Kostriken R., Karch F., Levine M., McGinnis W. Homeo box genes of the Antennapedia and bithorax complexes of Drosophila. Cell. 1985 Nov;43(1):71–80. doi: 10.1016/0092-8674(85)90013-3. [DOI] [PubMed] [Google Scholar]
  39. Scott M. P., Carroll S. B. The segmentation and homeotic gene network in early Drosophila development. Cell. 1987 Dec 4;51(5):689–698. doi: 10.1016/0092-8674(87)90092-4. [DOI] [PubMed] [Google Scholar]
  40. Sharpe P. T., Miller J. R., Evans E. P., Burtenshaw M. D., Gaunt S. J. Isolation and expression of a new mouse homeobox gene. Development. 1988 Feb;102(2):397–407. doi: 10.1242/dev.102.2.397. [DOI] [PubMed] [Google Scholar]
  41. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  42. Sigler P. B. Transcriptional activation. Acid blobs and negative noodles. Nature. 1988 May 19;333(6170):210–212. doi: 10.1038/333210a0. [DOI] [PubMed] [Google Scholar]
  43. Simeone A., Mavilio F., Acampora D., Giampaolo A., Faiella A., Zappavigna V., D'Esposito M., Pannese M., Russo G., Boncinelli E. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4914–4918. doi: 10.1073/pnas.84.14.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Simeone A., Mavilio F., Bottero L., Giampaolo A., Russo G., Faiella A., Boncinelli E., Peschle C. A human homoeo box gene specifically expressed in spinal cord during embryonic development. Nature. 1986 Apr 24;320(6064):763–765. doi: 10.1038/320763a0. [DOI] [PubMed] [Google Scholar]
  45. Streisinger G., Walker C., Dower N., Knauber D., Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981 May 28;291(5813):293–296. doi: 10.1038/291293a0. [DOI] [PubMed] [Google Scholar]
  46. Stuart G. W., McMurray J. V., Westerfield M. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development. 1988 Jun;103(2):403–412. doi: 10.1242/dev.103.2.403. [DOI] [PubMed] [Google Scholar]
  47. Verde P., Stoppelli M. P., Galeffi P., Di Nocera P., Blasi F. Identification and primary sequence of an unspliced human urokinase poly(A)+ RNA. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4727–4731. doi: 10.1073/pnas.81.15.4727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wilde C. D., Akam M. Conserved sequence elements in the 5' region of the Ultrabithorax transcription unit. EMBO J. 1987 May;6(5):1393–1401. doi: 10.1002/j.1460-2075.1987.tb02380.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wright C. V., Cho K. W., Fritz A., Bürglin T. R., De Robertis E. M. A Xenopus laevis gene encodes both homeobox-containing and homeobox-less transcripts. EMBO J. 1987 Dec 20;6(13):4083–4094. doi: 10.1002/j.1460-2075.1987.tb02754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES