Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1986 May 12;14(9):3927–3943. doi: 10.1093/nar/14.9.3927

Interactions of water soluble porphyrins with Z-poly(dG-dC).

R F Pasternack, D Sidney, P A Hunt, E A Snowden, E J Gibbs
PMCID: PMC339825  PMID: 3714499

Abstract

The water soluble porphyrin tetrakis(4-N-methylpyridyl)porphine (H2TMpyP) and its copper(II) derivative (CuTMpyP) convert Z-poly(dG-dC) to the B-form. For H2TMpyP, the fraction Z character (fr-Z) is given by fr-Z = 1.0 - 21 rO and for CuTMpyP, fr-Z = .94 - 12 rO where rO identical to [Porphyrin]O/[DNA]O. Neither the manganese(III) derivative of of this porphyrin (MnTMpyP) nor tetrakis(2-N-methylpyridyl)porphine (H2TMpyP-2) is nearly as effective at causing the conversion. The former two porphyrins have been shown to intercalate into B-poly(dG-dC) whereas the latter two porphyrins do not. The kinetics of the Z----B conversion are independent of porphyrin or poly(dG-dC) concentration for 1/rO greater than 6. At smaller values of 1/rO, the conversion rate is greatly increased for H2TMpyP and CuTMpyP. The interaction of these porphyrins with Z-poly(dG-dC) follows simple first order kinetics in this latter concentration range. It is proposed that for small values of 1/rO the sequence of events begins with a porphyrin-unassisted distortion of the Z-duplex (with a rate constant of 0.6 s-1) followed by a rapid uptake of porphyrin in what may be an intercalative mode. The porphyrin thus located in Z-regions brings about rapid conversion to the B-form. Binding of H2TMpyP or CuTMpyP to B-regions of a predominantly Z-strand leads to conversion of Z to B. However, this conversion process is considerably slower than when the porphyrins bind directly to Z-regions.

Full text

PDF
3928

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashikawa I., Kinosita K., Jr, Ikegami A. Dynamics of Z-form DNA. Biochim Biophys Acta. 1984 May 15;782(1):87–93. doi: 10.1016/0167-4781(84)90109-x. [DOI] [PubMed] [Google Scholar]
  2. Behe M., Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619–1623. doi: 10.1073/pnas.78.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bendel P. Measurement of the helix opening rate in Z-DNA by 1H nuclear magnetic resonance relaxation spectroscopy. Biochem Biophys Res Commun. 1985 Apr 16;128(1):352–359. doi: 10.1016/0006-291x(85)91686-9. [DOI] [PubMed] [Google Scholar]
  4. Butzow J. J., Shin Y. A., Eichhorn G. L. Effect of template conversion from the B to the Z conformation on RNA polymerase activity. Biochemistry. 1984 Oct 9;23(21):4837–4843. doi: 10.1021/bi00316a004. [DOI] [PubMed] [Google Scholar]
  5. Daune M. P., Westhof E., Koffel-Schwartz N., Fuchs R. P. Covalent binding of a carcinogen as a probe for the dynamics of deoxyribonucleic acid. Biochemistry. 1985 Apr 23;24(9):2275–2284. doi: 10.1021/bi00330a023. [DOI] [PubMed] [Google Scholar]
  6. Fiel R. J., Howard J. C., Mark E. H., Datta Gupta N. Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucleic Acids Res. 1979 Jul 11;6(9):3093–3118. doi: 10.1093/nar/6.9.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gessner R. V., Quigley G. J., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations. Biochemistry. 1985 Jan 15;24(2):237–240. doi: 10.1021/bi00323a001. [DOI] [PubMed] [Google Scholar]
  8. Markovits J., Ramstein J., Roques B. P., Le Pecq J. B. Effect of B-Z transition and nucleic acid structure on the conformational dynamics of bound ethidium dimer measured by hydrogen deuterium exchange kinetics. Nucleic Acids Res. 1985 May 24;13(10):3773–3788. doi: 10.1093/nar/13.10.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mirau P. A., Kearns D. R. The effect of intercalating drugs on the kinetics of the B to Z transition of poly(dG-dC). Nucleic Acids Res. 1983 Mar 25;11(6):1931–1941. doi: 10.1093/nar/11.6.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Müller W., Crothers D. M. Studies of the binding of actinomycin and related compounds to DNA. J Mol Biol. 1968 Jul 28;35(2):251–290. doi: 10.1016/s0022-2836(68)80024-5. [DOI] [PubMed] [Google Scholar]
  11. Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry. 1983 May 10;22(10):2406–2414. doi: 10.1021/bi00279a016. [DOI] [PubMed] [Google Scholar]
  12. Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry. 1983 Nov 8;22(23):5409–5417. doi: 10.1021/bi00292a024. [DOI] [PubMed] [Google Scholar]
  13. Pasternack R. F., Huber P. R., Boyd P., Engasser G., Francesconi L., Gibbs E., Fasella P., Venturo G. C., Hinds L. de C. On the aggregation of meso-substituted water-soluble porphyrins. J Am Chem Soc. 1972 Jun 28;94(13):4511–4517. doi: 10.1021/ja00768a016. [DOI] [PubMed] [Google Scholar]
  14. Pohl F. M., Jovin T. M., Baehr W., Holbrook J. J. Ethidium bromide as a cooperative effector of a DNA structure. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3805–3809. doi: 10.1073/pnas.69.12.3805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pohl F. M., Jovin T. M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol. 1972 Jun 28;67(3):375–396. doi: 10.1016/0022-2836(72)90457-3. [DOI] [PubMed] [Google Scholar]
  16. Pohl F. M. Polymorphism of a synthetic DNA in solution. Nature. 1976 Mar 25;260(5549):365–366. doi: 10.1038/260365a0. [DOI] [PubMed] [Google Scholar]
  17. Porschke D. Dynamics of DNA condensation. Biochemistry. 1984 Oct 9;23(21):4821–4828. doi: 10.1021/bi00316a002. [DOI] [PubMed] [Google Scholar]
  18. Rich A., Nordheim A., Wang A. H. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791–846. doi: 10.1146/annurev.bi.53.070184.004043. [DOI] [PubMed] [Google Scholar]
  19. Shafer R. H., Brown S. C., Delbarre A., Wade D. Binding of ethidium and bis(methidium)spermine to Z DNA by intercalation. Nucleic Acids Res. 1984 Jun 11;12(11):4679–4690. doi: 10.1093/nar/12.11.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
  21. Widom J., Baldwin R. L. Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6. J Mol Biol. 1980 Dec 25;144(4):431–453. doi: 10.1016/0022-2836(80)90330-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES