Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Feb 11;15(3):1153–1163. doi: 10.1093/nar/15.3.1153

Structure of the gene for the stringent starvation protein of Escherichia coli.

H Serizawa, R Fukuda
PMCID: PMC340514  PMID: 3029697

Abstract

The nucleotide sequence of the gene for the stringent starvation protein (SSP) of E. coli was determined. The deduced amino acid sequences shows that the SSP is composed of 212 amino acid residues, rich in both positively and negatively charged amino acids and has a molecular weight of 24,305. Primer extension experiments and nuclease S1 mapping analysis showed a site on the chromosome DNA corresponding to the 5' end of the transcript of the SSP gene. However, the consensus promoter sequences were not found at the upstream region. In the 3' flanking region a long coding frame was found immediately following the SSP gene, suggesting that the SSP gene is a member of a multicistronic operon.

Full text

PDF
1157

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk A. J., Sharp P. A. Spliced early mRNAs of simian virus 40. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1274–1278. doi: 10.1073/pnas.75.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fukuda R., Nagasawa-Fujimori H. Mechanism of the rifampicin induction of RNA polymerase beta and beta' subunit synthesis in Escherichia coli. J Biol Chem. 1983 Feb 25;258(4):2720–2728. [PubMed] [Google Scholar]
  3. Fukuda R., Yano R., Fukui T., Hase T., Ishihama A., Matsubara H. Cloning of the Escherichia coli gene for the stringent starvation protein. Mol Gen Genet. 1985;201(2):151–157. doi: 10.1007/BF00425652. [DOI] [PubMed] [Google Scholar]
  4. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  5. Ishihama A., Saitoh T. Subunits of RNA polymerase in function and structure. IX. Regulation of RNA polymerase activity by stringent starvation protein (SSP). J Mol Biol. 1979 Apr 25;129(4):517–530. doi: 10.1016/0022-2836(79)90466-2. [DOI] [PubMed] [Google Scholar]
  6. Ishii Y., Hase T., Fukumori Y., Matsubara H., Tobari J. Amino acid sequence studies of the light subunit of methylamine dehydrogenase from Pseudomonas AM1: existence of two residues binding the prosthetic group. J Biochem. 1983 Jan;93(1):107–119. doi: 10.1093/oxfordjournals.jbchem.a134144. [DOI] [PubMed] [Google Scholar]
  7. Marko M. A., Chipperfield R., Birnboim H. C. A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Anal Biochem. 1982 Apr;121(2):382–387. doi: 10.1016/0003-2697(82)90497-3. [DOI] [PubMed] [Google Scholar]
  8. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  9. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  10. Reeh S., Pedersen S., Friesen J. D. Biosynthetic regulation of individual proteins in relA+ and relA strains of Escherichia coli during amino acid starvation. Mol Gen Genet. 1976 Dec 22;149(3):279–289. doi: 10.1007/BF00268529. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES