Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Jun 11;15(11):4617–4627. doi: 10.1093/nar/15.11.4617

Identification of 28 DNA fragments that detect RFLPs in 13 distinct physical regions of the short arm of chromosome 5.

J Overhauser, J McMahan, J J Wasmuth
PMCID: PMC340884  PMID: 2884625

Abstract

A series of 175 lambda phage carrying human inserts isolated from a library that is specific for the short arm of human chromosome 5 (5p) have been regionally mapped on 5p using a deletion mapping panel of 16 human-hamster cell hybrids, each of which contains a chromosome 5 with a different deletion in the short arm. Seventy-five single copy DNA fragments were screened with 12 restriction enzymes for their ability to detect restriction fragment length polymorphisms (RFLPs). Twenty-eight of these DNA fragments, which are located in 13 distinct physical regions of 5p, were found to detect RFLPs. These DNA markers make it possible to construct a linkage map that will span the entire length of 5p and will allow the relationship between genetic and physical distance for this region of the genome to be examined at a high level of resolution.

Full text

PDF
4621

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
  2. Carlock L. R., Wasmuth J. J. Molecular approach to analyzing the human 5p deletion syndrome, cri du chat. Somat Cell Mol Genet. 1985 May;11(3):267–276. doi: 10.1007/BF01534683. [DOI] [PubMed] [Google Scholar]
  3. Dana S., Wasmuth J. J. Linkage of the leuS, emtB, and chr genes on chromosome 5 in humans and expression of human genes encoding protein synthetic components in human--Chinese hamster hybrids. Somatic Cell Genet. 1982 Mar;8(2):245–264. doi: 10.1007/BF01538680. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Froster-Iskenius U. G., Hayden M. R., Wang H. S., Kalousek D. K., Horsman D., Pfeiffer R. A., Schottky A., Schwinger E. A family with Huntington disease and reciprocal translocation 4;5. Am J Hum Genet. 1986 May;38(5):759–767. [PMC free article] [PubMed] [Google Scholar]
  7. Migone N., Feder J., Cann H., van West B., Hwang J., Takahashi N., Honjo T., Piazza A., Cavalli-Sforza L. L. Multiple DNA fragment polymorphisms associated with immunoglobulin mu chain switch-like regions in man. Proc Natl Acad Sci U S A. 1983 Jan;80(2):467–471. doi: 10.1073/pnas.80.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Overhauser J., Beaudet A. L., Wasmuth J. J. A fine structure physical map of the short arm of chromosome 5. Am J Hum Genet. 1986 Nov;39(5):562–572. [PMC free article] [PubMed] [Google Scholar]
  9. Overhauser J., Golbus M. S., Schonberg S. A., Wasmuth J. J. Molecular analysis of an unbalanced deletion of the short arm of chromosome 5 that produces no phenotype. Am J Hum Genet. 1986 Jul;39(1):1–10. [PMC free article] [PubMed] [Google Scholar]
  10. Wyman A. R., White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6754–6758. doi: 10.1073/pnas.77.11.6754. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES