Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Mar;5(3):1041–1057. doi: 10.1093/nar/5.3.1041

The identification of the tRNA substrates for the supK tRNA methylase.

W T Pope, A Brown, R H Reeves
PMCID: PMC342043  PMID: 347399

Abstract

Purified preparations of the tRNA methylase deficient in supK strains of Salmonella typhimurium transfer methyl groups from S-adenosylmethionine (SAM) to at least two tRNA species, an alanine tRNA and a serine tRNA. The identity of the tRNA substrates for this enzyme was determined by a change in the elution position of the methyl-labeled tRNA from BND-cellulose columns before and after aminoacylation with a specific amino acid followed by derivatization of the free primary amino group with phenoxy- or naphthoxyacetate. The radioactive methyl group enzymatically added to these tRNAs is both acid and base labile and can be hydrolyzed to a volatile product at pHs above 7.5 and also at pH 1. The methylated 3'-nucleotide isolated from digested tRNA is a pyrimidine derivative and chromatographs like a modified uridylic acid. Its identity has not been established, but it is likely that it corresponds to the methyl ester of V, uridin-5-oxyacetic acid.

Full text

PDF
1043

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvino C. G., Remington L., Ingram V. M. Chemical studies on amino acid acceptor ribonucleic acids. 8. Degradation of purified alanine Escherichia coli B transfer ribonucleic acid by pancreatic ribonuclease. Biochemistry. 1969 Jan;8(1):282–288. doi: 10.1021/bi00829a040. [DOI] [PubMed] [Google Scholar]
  2. Atkins J. F., Ryce S. UGA and non-triplet suppressor reading of the genetic code. Nature. 1974 Jun 7;249(457):527–530. doi: 10.1038/249527a0. [DOI] [PubMed] [Google Scholar]
  3. Gillam I., Blew D., Warrington R. C., von Tigerstrom M., Tener G. M. A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry. 1968 Oct;7(10):3459–3468. doi: 10.1021/bi00850a022. [DOI] [PubMed] [Google Scholar]
  4. Ishikura H., Yamada Y., Nishimura S. The nucleotide sequence of a serine tRNA from Escherichia coli. FEBS Lett. 1971 Jul 15;16(1):68–70. doi: 10.1016/0014-5793(71)80688-9. [DOI] [PubMed] [Google Scholar]
  5. Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
  6. Reeves R. H., Cantor C. R., Chambers R. W. Effect of magnesium ions on the conformation of two highly purified yeast alanine transfer ribonucleic acids. Biochemistry. 1970 Sep 29;9(20):3993–4002. doi: 10.1021/bi00822a019. [DOI] [PubMed] [Google Scholar]
  7. Reeves R. H., Roth J. R. A recessive UGA suppressor. J Mol Biol. 1971 Mar 28;56(3):523–533. doi: 10.1016/0022-2836(71)90399-8. [DOI] [PubMed] [Google Scholar]
  8. Reeves R. H., Roth J. R. Transfer ribonucleic acid methylase deficiency found in UGA supressor strains. J Bacteriol. 1975 Oct;124(1):332–340. doi: 10.1128/jb.124.1.332-340.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Riddle D. L., Roth J. R. Frameshift suppressors. 3. Effects of suppressor mutations on transfer RNA. J Mol Biol. 1972 May 28;66(3):495–506. doi: 10.1016/0022-2836(72)90429-9. [DOI] [PubMed] [Google Scholar]
  10. White B. N., Tener G. M. Small analytical BD-cellulose columns for rapid chromatography of aminoacyl-tRNAs. Anal Biochem. 1973 Oct;55(2):394–398. doi: 10.1016/0003-2697(73)90128-0. [DOI] [PubMed] [Google Scholar]
  11. Williams R. J., Nagel W., Roe B., Dudock B. Primary structure of E. coli alanine transfer RNA: relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1215–1221. doi: 10.1016/0006-291x(74)90328-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES