Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Jun;5(6):1997–2012. doi: 10.1093/nar/5.6.1997

Protonated polynucleotides structures - 23. The acid-base hysteresis of poly(dG).poly(dC).

D Thiele, C Marck, C Schneider, W Guschlbauer
PMCID: PMC342140  PMID: 27762

Abstract

The large hysteresis observed during the acid-base titration of poly(dG). poly (dC) was studied by CD and potentiometric scanning curves. Intermediate scanning loops as well as the equilibrium and metastable branches of the hysteresis loop have been determined. The potentiometric titrations showed, however, that the various complexes were not discrete entities, but were linked in "polycomplexes" as had been already suggested. This prevented a thermodynamic study of the system. The acid-base titration was further investigated as a function of ionic strength and temperature. The pK's showed considerably lower ionic strength dependence than observed for polyribonucleotide complexes. The thermal transitions permitted to establish the relative stabilities of the various complexes between pH 2.5 and pH 12.0.

Full text

PDF
2011

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronssohn G., Travers F. Electrostatic potential modulations on polynucleotides as a function of ionic content: potentiometric determinations. Nucleic Acids Res. 1976 May;3(5):1373–1385. doi: 10.1093/nar/3.5.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gray D. M. A circular dichroism study of poly dG, poly dC, and poly dG:dC. Biopolymers. 1974;13(10):2087–2102. doi: 10.1002/bip.1974.360131011. [DOI] [PubMed] [Google Scholar]
  3. Guschlbauer W. Protonated polynucleotide structures. 16. Thermodynamics of the melting of the acid form of polycytidylic acid. Nucleic Acids Res. 1975 Mar;2(3):353–360. doi: 10.1093/nar/2.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guschlbauer W., Vetterl V. Protonated polynucleotide structures Thermodynamics of the melting of the acid form of polyadenylic acid. FEBS Lett. 1969 Jul;4(1):57–60. doi: 10.1016/0014-5793(69)80196-1. [DOI] [PubMed] [Google Scholar]
  5. INMAN R. B., BALDWIN R. L. HELIX--RANDOM COIL TRANSITIONS IN DNA HOMOPOLYMER PAIRS. J Mol Biol. 1964 Apr;8:452–469. doi: 10.1016/s0022-2836(64)80003-6. [DOI] [PubMed] [Google Scholar]
  6. KOTIN L. ON THE EFFECT OF IONIC STRENGTH ON THE MELTING TEMPERATURE OF DNA. J Mol Biol. 1963 Sep;7:309–311. doi: 10.1016/s0022-2836(63)80009-1. [DOI] [PubMed] [Google Scholar]
  7. Katchalsky A., Neumann E. Hysteresis and molecular memory record. Int J Neurosci. 1972 Apr;3(4):175–182. doi: 10.3109/00207457209147020. [DOI] [PubMed] [Google Scholar]
  8. Marck C., Guschlbauer W. A simple method for the computation of first neighbour frequencies of DNAs from CD spectra. Nucleic Acids Res. 1978 Jun;5(6):2013–2031. doi: 10.1093/nar/5.6.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marck C., Thiele D. Poly(dG).poly(dC) at neutral and alkaline pH: the formation of triple stranded poly(dG).poly(dG).poly(dC). Nucleic Acids Res. 1978 Mar;5(3):1017–1028. doi: 10.1093/nar/5.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marck C., Thiele D., Schneider C., Guschlbauer W. Protonated polynucleotides structures - 22.CD study of the acid-base titration of poly(dG).poly(dC). Nucleic Acids Res. 1978 Jun;5(6):1979–1996. doi: 10.1093/nar/5.6.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RADDING C. M., JOSSE J., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. XII. A polymer of deoxyguanylate and deoxycytidylate. J Biol Chem. 1962 Sep;237:2869–2876. [PubMed] [Google Scholar]
  12. Revzin A., Neumann E., Katchalsky A. Metastable secondary structures in ribosomal RNA molecular hysteresis in the acid-base titration of Escherichia coli ribosomal RNA. J Mol Biol. 1973 Sep 5;79(1):95–114. doi: 10.1016/0022-2836(73)90272-6. [DOI] [PubMed] [Google Scholar]
  13. Spodheim M., Neumann E. Ionic strength dependence of the hysteresis in the polyriboadenylate-polyribouridylate system. Biophys Chem. 1975 Apr;3(2):109–124. doi: 10.1016/0301-4622(75)80001-9. [DOI] [PubMed] [Google Scholar]
  14. Thiele D., Guschlbauer W. Polynucléotides protonés. VII. Transitions thermiques entre differents complexes de l'acide polyinosinique et de l'acide polycytidylique en milieu acide. Biopolymers. 1969;8(3):361–378. doi: 10.1002/bip.1969.360080307. [DOI] [PubMed] [Google Scholar]
  15. Thiele D., Guschlbauer W. Protonated polynucleotide structures. IX. Disproportionation of poly (G)-poly (C) in acid medium. Biopolymers. 1971;10(1):143–157. doi: 10.1002/bip.360100111. [DOI] [PubMed] [Google Scholar]
  16. Wells R. D., Larson J. E., Grant R. C., Shortle B. E., Cantor C. R. Physicochemical studies on polydeoxyribonucleotides containing defined repeating nucleotide sequences. J Mol Biol. 1970 Dec 28;54(3):465–497. doi: 10.1016/0022-2836(70)90121-x. [DOI] [PubMed] [Google Scholar]
  17. de Marky N., Manning G. S. On the application of polyelectrolyte limiting laws to the helix-coil transition of DNA. III. TDependence of helix stability on excess univalent salt and on polynucleotide phosphate concentration for variable equivalent ratios of divalent metal ion to phosphate. Biopolymers. 1975 Jul;14(7):1407–1422. doi: 10.1002/bip.1975.360140708. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES