Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Aug;5(8):2789–2799. doi: 10.1093/nar/5.8.2789

On the role of protein S4 N-terminal residues 1 through 30 in 30S ribosome function.

L M Changchien, J Schwarzbauer, M Cantrell, G R Craven
PMCID: PMC342207  PMID: 358148

Abstract

30S ribosomal protein S4 contains a single cysteine residue at position 31. We have selectively cleaved the peptide bond adjacent to this residue using the reagent 2-nitro-5-thiocyanobenzoic acid. The two resultant fragments were purified. The smaller S4-fragment (1-30) was found to be incapable of interacting with 16S RNA directly. This fragment also is not incorporated into a particle reconstituted from 16S RNA and 20 purified proteins with S4 missing. In contrast, the large S4-fragment (31-203) appears to be fully functional in ribosome assembly. Replacement of S4 with this fragment in the reconstitution reaction leads to a complete 30S ribosome containing all 30S proteins. This particle has a full capacity to bind poly U but has lost all activity for poly U directed phe-tRNA binding. We therefore propose that the N-terminus of protein S4 is not critical for ribosome assembly but is essential for tRNA binding.

Full text

PDF
2792

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Changchien L. M., Craven G. R. The function of the N-terminal region of ribosomal protein S4. J Mol Biol. 1976 Dec;108(2):381–401. doi: 10.1016/s0022-2836(76)80126-x. [DOI] [PubMed] [Google Scholar]
  2. Craven G. R., Gupta V. Three-dimensional organization of the 30S ribosomal proteins from Escherichia coli. I. Preliminary classification of the proteins. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1329–1336. doi: 10.1073/pnas.67.3.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIES J., GILBERT W., GORINI L. STREPTOMYCIN, SUPPRESSION, AND THE CODE. Proc Natl Acad Sci U S A. 1964 May;51:883–890. doi: 10.1073/pnas.51.5.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donner D., Kurland C. G. Changes in the primary structure of a mutationally altered ribosomal protein S4 of Escherichia coli. Mol Gen Genet. 1972;115(1):49–53. doi: 10.1007/BF00272217. [DOI] [PubMed] [Google Scholar]
  5. Funatsu G., Puls W., Schiltz E., Reinbolt J., Wittmann H. G. Ribosomal proteins. XXXI. Comparative studies on altered proteins S4 of six Escherichia coli revertants from streptomycin dependence. Mol Gen Genet. 1972;115(2):131–139. doi: 10.1007/BF00277293. [DOI] [PubMed] [Google Scholar]
  6. Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
  7. Held W. A., Mizushima S., Nomura M. Reconstitution of Escherichia coli 30 S ribosomal subunits from purified molecular components. J Biol Chem. 1973 Aug 25;248(16):5720–5730. [PubMed] [Google Scholar]
  8. Hochkeppel H. K., Spicer E., Craven G. R. A method of preparing Escherichia coli 16 S RNA possessing previously unobserved 30 S ribosomal protein binding sites. J Mol Biol. 1976 Feb 25;101(2):155–170. doi: 10.1016/0022-2836(76)90369-7. [DOI] [PubMed] [Google Scholar]
  9. Jacobson G. R., Schaffer M. H., Stark G. R., Vanaman T. C. Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. J Biol Chem. 1973 Oct 10;248(19):6583–6591. [PubMed] [Google Scholar]
  10. Kurland C. G. The requirements for specific sRNA binding by ribosomes. J Mol Biol. 1966 Jun;18(1):90–108. doi: 10.1016/s0022-2836(66)80079-7. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Moore G., Crichton R. R. Reductive methylation: a method for preparing functionally active radioactive ribosomes. FEBS Lett. 1973 Nov 15;37(1):74–78. doi: 10.1016/0014-5793(73)80429-6. [DOI] [PubMed] [Google Scholar]
  13. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  14. Pongs O., Stöffler G., Lanka E. The codon binding site of the Escherichia coli ribosome as studied with a chemically reactive A-U-G analog. J Mol Biol. 1975 Dec 5;99(2):301–315. doi: 10.1016/s0022-2836(75)80148-3. [DOI] [PubMed] [Google Scholar]
  15. Smolarsky M., Tal M. Novel method for measuring polyuridylic acid binding to ribosomes. Biochim Biophys Acta. 1970 Feb 18;199(2):447–452. doi: 10.1016/0005-2787(70)90087-0. [DOI] [PubMed] [Google Scholar]
  16. Spicer E., Schwarzbauer J., Craven G. R. Isolation of ribosomal protein-RNA complexes by nitrocellulose membrane filtration: equilibrium binding studies. Nucleic Acids Res. 1977 Feb;4(2):491–499. doi: 10.1093/nar/4.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. J Mol Biol. 1969 Mar 28;40(3):391–413. doi: 10.1016/0022-2836(69)90161-2. [DOI] [PubMed] [Google Scholar]
  18. Voynow P., Kurland C. G. Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry. 1971 Feb 2;10(3):517–524. doi: 10.1021/bi00779a026. [DOI] [PubMed] [Google Scholar]
  19. Zimmermann R. A., Garvin R. T., Gorini L. Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2263–2267. doi: 10.1073/pnas.68.9.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES