Abstract
Monomer chromatin nu bodies (nu1) from chicken erythrocyte nuclei were exposed to 0-10 M urea plus 0.2 mM EDTA (PH 7). Alterations in nu1 conformation were examined using hydrodynamic methods (i.e., S, eta, and (formula: see text)), thermal denaturation, circular dichroism, reactivity of histone thiol groups to N-ethyl maleimide, and electron microscopy. The two domains of a nu body (i.e., the DNA-rich shell and the protein-rich core) aeared to respond differently to the destabilizing effects of increasing urea; DNA conformation and stability exhibited noncooperative changes; the core protein structure revealed cooperative destabilization between 4 and 7 M urea. Companion studies on the conformation of the inner histone "heterotypic tetramer" also revealed cooperative destabilization with increasing urea concentration.
Full text
PDF![1911](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/64453ce1acd9/nar00479-0213.png)
![1912](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/0b5fff809491/nar00479-0214.png)
![1913](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/8f87a08b1fb0/nar00479-0215.png)
![1914](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/4894d1323dc3/nar00479-0216.png)
![1915](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/19236adc2bb2/nar00479-0217.png)
![1916](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/338f7507adcf/nar00479-0218.png)
![1917](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/aaba93c39994/nar00479-0219.png)
![1918](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/dead34e25fdf/nar00479-0220.png)
![1919](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/fd886addd93e/nar00479-0221.png)
![1920](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/b5b9be1cd8c3/nar00479-0222.png)
![1921](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/601e6bf3da51/nar00479-0223.png)
![1922](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/f8901aa48b60/nar00479-0224.png)
![1923](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/0c197be9ac6e/nar00479-0225.png)
![1924](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/f2e2544f429d/nar00479-0226.png)
![1925](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/ec5789e7d540/nar00479-0227.png)
![1926](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/829e85fbb437/nar00479-0228.png)
![1927](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/cd29c788158a/nar00479-0229.png)
![1928](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/fd12faba6844/nar00479-0230.png)
![1929](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/bbad9b520c44/nar00479-0231.png)
![1930](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/e8824e38182c/nar00479-0232.png)
![1931](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/342531/62128bdb8842/nar00479-0233.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansevin A. T., Hnilica L. S., Spelsberg T. C., Kehm S. L. Structure studies on chromatin and nucleohistones. Thermal denaturation profiles recorded in the presence of urea. Biochemistry. 1971 Dec 7;10(25):4793–4803. doi: 10.1021/bi00801a030. [DOI] [PubMed] [Google Scholar]
- Bartley J. A., Chalkley R. The viscosity of nucleohistone in urea. Biochim Biophys Acta. 1968 Jun 26;160(2):224–228. doi: 10.1016/0005-2795(68)90090-1. [DOI] [PubMed] [Google Scholar]
- Bekhor I., Bonner J., Dahmus G. K. Hybridization of chromosomal RNA to native DNA. Proc Natl Acad Sci U S A. 1969 Jan;62(1):271–277. doi: 10.1073/pnas.62.1.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boffa L., Saccomani G., Tamburro A. M., Scatturin A., Vidali G. Chromosomal nucleoproteins: CD studies on reconstituted nucleohistones from avian erythrocytes. Int J Protein Res. 1971;3(6):357–363. doi: 10.1111/j.1399-3011.1971.tb01731.x. [DOI] [PubMed] [Google Scholar]
- Bramhall S., Noack N., Wu M., Loewenberg J. R. A simple colorimetric method for determination of protein. Anal Biochem. 1969 Oct 1;31(1):146–148. doi: 10.1016/0003-2697(69)90251-6. [DOI] [PubMed] [Google Scholar]
- CASASSA E. F., EISENBERG H. THERMODYNAMIC ANALYSIS OF MULTICOMPONENT SOLUTIONS. Adv Protein Chem. 1964;19:287–395. doi: 10.1016/s0065-3233(08)60191-6. [DOI] [PubMed] [Google Scholar]
- Carlson R. D., Olins A. L., Olins D. E. Urea denaturation of chromatin periodic structure. Biochemistry. 1975 Jul 15;14(14):3122–3125. doi: 10.1021/bi00685a013. [DOI] [PubMed] [Google Scholar]
- Chang C., Li H. J. Urea perturbation and the reversibility of nucleohistone conformation. Nucleic Acids Res. 1974 Aug;1(8):945–958. doi: 10.1093/nar/1.8.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elgin S. C., Weintraub H. Chromosomal proteins and chromatin structure. Annu Rev Biochem. 1975;44:725–774. doi: 10.1146/annurev.bi.44.070175.003453. [DOI] [PubMed] [Google Scholar]
- Fric I., Sponar J. Circular dichroism of native and reconstituted nucleohistones. Biopolymers. 1971;10(9):1525–1531. doi: 10.1002/bip.360100908. [DOI] [PubMed] [Google Scholar]
- Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3966–3970. doi: 10.1073/pnas.73.11.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Germond J. E., Hirt B., Oudet P., Gross-Bellark M., Chambon P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A. 1975 May;72(5):1843–1847. doi: 10.1073/pnas.72.5.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerwin B. I., Smith S. G., Peebles P. T. Two active forms of RD-114 virus DNA polymerase in infected cells. Cell. 1975 Sep;6(1):45–52. doi: 10.1016/0092-8674(75)90072-0. [DOI] [PubMed] [Google Scholar]
- Gilli S. J., Thompson D. S. A rotating cartesian-diver viscometer. Proc Natl Acad Sci U S A. 1967 Mar;57(3):562–566. doi: 10.1073/pnas.57.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottesfeld J. M., Murphy R. F., Bonner J. Structure of transcriptionally active chromatin. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4404–4408. doi: 10.1073/pnas.72.11.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanlon S., Johnson R. S., Wolf B., Chan A. Mixed conformations of deoxyribonucleic acid in chromatin: a preliminary report. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3263–3267. doi: 10.1073/pnas.69.11.3263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrington R. E. Flow birefringence of T2 bacteriophage DNA. Biopolymers. 1968;6(1):105–116. doi: 10.1002/bip.1968.360060109. [DOI] [PubMed] [Google Scholar]
- Jackson V., Chalkley R. The effect of urea on staphylococcal nuclease digestion of chromatin. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1391–1400. doi: 10.1016/0006-291x(75)90181-3. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Chan A., Hanlon S. Mixed conformations of deoxyribonucleic acid in intact chromatin isolated by various preparative methods. Biochemistry. 1972 Nov 7;11(23):4347–4358. doi: 10.1021/bi00773a023. [DOI] [PubMed] [Google Scholar]
- Kawahara K., Tanford C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J Biol Chem. 1966 Jul 10;241(13):3228–3232. [PubMed] [Google Scholar]
- Mandel R., Fasman G. D. Chromatin and nucleosome structure. Nucleic Acids Res. 1976 Aug;3(8):1839–1855. doi: 10.1093/nar/3.8.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olins A. L., Carlson R. D., Wright E. B., Olins D. E. Chromatin nu bodies: isolation, subfractionation and physical characterization. Nucleic Acids Res. 1976 Dec;3(12):3271–3291. doi: 10.1093/nar/3.12.3271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
- Olins D. E., Olins A. L., Von Hippel P. H. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J Mol Biol. 1967 Mar 14;24(2):157–176. doi: 10.1016/0022-2836(67)90324-5. [DOI] [PubMed] [Google Scholar]
- Ramm E. I., Vorob'ev V. I., Birshtein T. M., Bolotina I. A., Volkenshtein M. V. Circular dichroism of DNA and histones in the free state and in deoxyribonucleoprotein. Eur J Biochem. 1972 Feb 15;25(2):245–253. doi: 10.1111/j.1432-1033.1972.tb01690.x. [DOI] [PubMed] [Google Scholar]
- Rill R., Van Holde K. E. Properties of nuclease-resistant fragments of calf thymus chromatin. J Biol Chem. 1973 Feb 10;248(3):1080–1083. [PubMed] [Google Scholar]
- Senior M. B., Olins D. E. Effect of formaldehyde on the circular dichroism of chicken erythrocyte chromatin. Biochemistry. 1975 Jul 29;14(15):3332–3337. doi: 10.1021/bi00686a007. [DOI] [PubMed] [Google Scholar]
- Shih T. Y., Fasman G. D. Conformation of deoxyribonucleic acid in chromatin: a circular dichroism study. J Mol Biol. 1970 Aug 28;52(1):125–129. doi: 10.1016/0022-2836(70)90182-8. [DOI] [PubMed] [Google Scholar]
- Shih T. Y., Lake R. S. Studies on the structure of metaphase and interphase chromatin of Chinese hamster cells by circular dichroism and thermal denaturation. Biochemistry. 1972 Dec 5;11(25):4811–4817. doi: 10.1021/bi00775a026. [DOI] [PubMed] [Google Scholar]
- Simpson R. T. Histones H3 and H4 interact with the ends of nucleosome DNA. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4400–4404. doi: 10.1073/pnas.73.12.4400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson R. T., Sober H. A. Circular dichroism of calf liver nucleohistone. Biochemistry. 1970 Aug 4;9(16):3103–3109. doi: 10.1021/bi00818a001. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Worcel A., Alberts B. A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell. 1976 Nov;9(3):409–417. doi: 10.1016/0092-8674(76)90085-4. [DOI] [PubMed] [Google Scholar]
- Whitlock J. P., Jr, Simpson R. T. Preparation and physical characterization of a homogeneous population of monomeric nucleosomes from HeLa cells. Nucleic Acids Res. 1976 Sep;3(9):2255–2266. doi: 10.1093/nar/3.9.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilhelm F. X., de Murcia G. M., Champagne M. H., Daune M. P. Conformational changes of histones and DNA during the thermal denaturation of nucleoprotein. Eur J Biochem. 1974 Jun 15;45(2):431–443. doi: 10.1111/j.1432-1033.1974.tb03567.x. [DOI] [PubMed] [Google Scholar]
- Williams R. E., Lurquin P. F., Seligy V. L. Circular dichroism of avian-erythrocyte chromatin and ethidium bromide bound to chromatin. Eur J Biochem. 1972 Sep 25;29(3):426–432. doi: 10.1111/j.1432-1033.1972.tb02005.x. [DOI] [PubMed] [Google Scholar]
- Yaneva M., Dessev G. Persistence of the ten-nucleotide repeat in chromatin unfolded in urea, as revealed by digestion with deoxyribonuclease i. Nucleic Acids Res. 1976 Jul;3(7):1761–1767. doi: 10.1093/nar/3.7.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]