Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Jan;3(1):285–295. doi: 10.1093/nar/3.1.285

An improved method for the separation and quantitation of the modified nucleosides of transfer RNA.

H Rogg, R Brambilla, G Keith, M Staehelin
PMCID: PMC342895  PMID: 1250705

Abstract

A method is described which allows a very efficient determination of the modified nucleosides of tRNA. The technique involves enzymatic degradation of the tRNA to nucleosides at pH 7.6 and their separation by two-dimensional thin-layer chromatography on cellulose-coated aluminum foils. Based on the analysis of two mammalian tRNAs it is shown that the technique is suitable for the determination of chemically unstable nucleosides as well as the ribose-methylated compounds. At least 36 of the 45 known modified nucleosides can be separated and quantitatively determined by the method described. This procedure is especially suitable for the estimation of the nucleoside composition of unlabeled tRNAs as well as for studying the post-transcriptional modifications of tRNA.

Full text

PDF
295

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
  2. BERGQUIST P. L., SCOTT J. F. SOME NUCLEOTIDE SEQUENCES FROM PARTIALLY PURIFIED TRANSFER RIBONUCLEIC ACIDS. Biochim Biophys Acta. 1964 Jun 22;87:199–211. doi: 10.1016/0926-6550(64)90216-6. [DOI] [PubMed] [Google Scholar]
  3. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  4. Björk G. R., Svensson I. Analysis of methylated constituents from RNA by thin-layer chromatography. Biochim Biophys Acta. 1967 Apr 18;138(2):430–432. doi: 10.1016/0005-2787(67)90504-7. [DOI] [PubMed] [Google Scholar]
  5. Cunningham R. S., Gray M. W. Derivatives of N-(N-(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl)threonine in phosphodiesterase hydrolysates of wheat embryo transfer ribonucleic acid. Biochemistry. 1974 Jan 29;13(3):543–553. doi: 10.1021/bi00700a022. [DOI] [PubMed] [Google Scholar]
  6. Feldmann H., Falter H. Transfer ribonucleic acid from Mycoplasma laidlawii A. Eur J Biochem. 1971 Feb;18(4):573–581. doi: 10.1111/j.1432-1033.1971.tb01278.x. [DOI] [PubMed] [Google Scholar]
  7. GRIPPO P., IACCARINO M., ROSSI M., SCARANO E. THIN-LAYER CHROMATOGRAPHY OF NUCLEOTIDES, NUCLEOSIDES AND NUCLEIC ACID BASES. Biochim Biophys Acta. 1965 Jan 11;95:1–7. doi: 10.1016/0005-2787(65)90204-2. [DOI] [PubMed] [Google Scholar]
  8. HOLLEY R. W., APGAR J., EVERETT G. A., MADISON J. T., MARQUISEE M., MERRILL S. H., PENSWICK J. R., ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science. 1965 Mar 19;147(3664):1462–1465. doi: 10.1126/science.147.3664.1462. [DOI] [PubMed] [Google Scholar]
  9. Halpaap H., Bausch H. Erweiterung der Dünnschichtchromatographischen Technik durch Fertigräparationen in Rollenform. J Chromatogr. 1970 Apr 8;48(1):144–160. doi: 10.1016/s0021-9673(01)85542-4. [DOI] [PubMed] [Google Scholar]
  10. Harada F., Yamaizumi K., Nishimura S. Oligonucleotide sequences of RNase T 1 and pancreatic RNase digests of E. coli aspartic acid tRNA. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1605–1609. doi: 10.1016/0006-291x(72)90525-6. [DOI] [PubMed] [Google Scholar]
  11. Iwanami Y., Brown G. M. Methylated bases of transfer ribonucleic acid from HeLa and L cells. Arch Biochem Biophys. 1968 Mar 20;124(1):472–482. doi: 10.1016/0003-9861(68)90355-x. [DOI] [PubMed] [Google Scholar]
  12. Keith G., Ebel J. P., Dirheimer G. The primary structure of two mammalian tRNAs Phe: identity of calf liver and rabbit liver tRNAs Phe. FEBS Lett. 1974 Nov 1;48(1):50–52. doi: 10.1016/0014-5793(74)81059-8. [DOI] [PubMed] [Google Scholar]
  13. Lawley P. D., Shah S. A. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels. Biochem J. 1972 Jun;128(1):117–132. doi: 10.1042/bj1280117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Littauer U. Z., Inouye H. Regulation of tRNA. Annu Rev Biochem. 1973;42:439–470. doi: 10.1146/annurev.bi.42.070173.002255. [DOI] [PubMed] [Google Scholar]
  15. MAGASANIK B., VISCHER E., DONIGER R., ELSON D., CHARGAFF E. The separation and estimation of ribonucleotides in minute quantities. J Biol Chem. 1950 Sep;186(1):37–50. [PubMed] [Google Scholar]
  16. MARKHAM R., SMITH J. D. Chromatographic studies of nucleic acids. 4. The nucleic acid of the turnip yellow mosaic virus including a note on the nucleic acid of the tomato bushy stunt virus. Biochem J. 1951 Sep;49(4):401–406. doi: 10.1042/bj0490401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morisawa S., Chargaff E. On the bias of the distribution of the 2'-O-methylribonucleotide constituents of yeast transfer RNA. Biochim Biophys Acta. 1968 Dec 17;169(2):285–296. doi: 10.1016/0005-2787(68)90037-3. [DOI] [PubMed] [Google Scholar]
  18. Munns T. W., Podratz K. C., Katzman P. A. A method for determination of the methylated constituents of transfer ribonucleic acid. Biochemistry. 1974 Oct 8;13(21):4409–4416. doi: 10.1021/bi00718a026. [DOI] [PubMed] [Google Scholar]
  19. Munns T. W., Sims H. F. Determination of the extent of methylation of tRNA. Anal Biochem. 1975 Apr;64(2):537–544. doi: 10.1016/0003-2697(75)90465-0. [DOI] [PubMed] [Google Scholar]
  20. Ohashi Ziro, Harada Fumio, Nishimura Susumu. Primary sequence of glutamic acid tRNA II from Escherichia coli. FEBS Lett. 1972 Feb 1;20(2):239–241. doi: 10.1016/0014-5793(72)80804-4. [DOI] [PubMed] [Google Scholar]
  21. Pike L. M., Rottman F. The determination of 2'-O-methylnucleosides in RNA. Anal Biochem. 1974 Oct;61(2):367–378. doi: 10.1016/0003-2697(74)90404-7. [DOI] [PubMed] [Google Scholar]
  22. Rajbhandary U. L., Chang S. H., Stuart A., Faulkner R. D., Hoskinson R. M., Khorana H. G. Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1967 Mar;57(3):751–758. doi: 10.1073/pnas.57.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Randerath E., Yu C. T., Randerath K. Base analysis of ribopolynucleotides by chemical tritium labeling: a methodological study with model nucleosides and purified tRNA species. Anal Biochem. 1972 Jul;48(1):172–198. doi: 10.1016/0003-2697(72)90181-9. [DOI] [PubMed] [Google Scholar]
  24. Randerath K. Ion-exchange thin-layer chromatography. 18. Detection of purine derivatives in the nanogram range by phosphorescence at 77 degrees K. Anal Biochem. 1967 Dec;21(3):480–485. doi: 10.1016/0003-2697(67)90327-2. [DOI] [PubMed] [Google Scholar]
  25. Rogg H., Staehelin M. Nucleotide sequences of rat liver serine-tRNA. 2. The products of digestion with ribonuclease T. Eur J Biochem. 1971 Jul 29;21(2):243–248. doi: 10.1111/j.1432-1033.1971.tb01462.x. [DOI] [PubMed] [Google Scholar]
  26. STAEHELIN M. ON THE SPECIFICITY OF RNAASE T1. Biochim Biophys Acta. 1964 Jul 22;87:493–495. doi: 10.1016/0926-6550(64)90121-5. [DOI] [PubMed] [Google Scholar]
  27. Sen G. C., Ghosh H. P. A fast and sensitive method for the analysis of modified nucleosides in tRNA. Anal Biochem. 1974 Apr;58(2):578–591. doi: 10.1016/0003-2697(74)90227-9. [DOI] [PubMed] [Google Scholar]
  28. Singhal R. P. Ion-exlusion chromatography: analysis and isolation of nucleic acid components, and influence of separation parameters. Arch Biochem Biophys. 1972 Oct;152(2):800–810. doi: 10.1016/0003-9861(72)90276-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES