Abstract
tRNAile was isolated from E. coli Cp 79 (leu-, arg-, thr-, his-, thiamin-, RCrel) which had been grown on a sub-optimal concentration of thr and was found to contain an average of 50% less N-[9-(beta-D-ribofuranosyl)- purin-6-ylcarbamoyl]threonine, t6Ado, than tRNAile from cells grown on an optimum concentration of thr and containing a normal complement of t6Ado. The two tRNA's were identical in their ability to be aminoacylated, to accept the 3'-terminal dinucleotide, and to form an ile-tRNAile-Tu-GTP complex. In contrast, the t6Ado-deficient-tRNA was significantly less efficient in binding to ribosomes compared to the normal tRNA. This difference was seen in the binding of deacylated tRNA and in the nonenzymatic and enzymatic binding of ile-tRNA, all in response to poly AUC. The t6Ado-deficient ile-tRNA demonstrated no binding at Mg2+ concentrations less than or equal to 10 mM, while the normal ile-tRNA bound at low Mg2+ concentrations. Tetracycline had the same effect on the normal as on the t6Ado-deficient ile-tRNA binding. As a control, the binding of phe-tRNA (which does not contain t6Ado) from normal and thr-starved cells in response to poly U was identical. It was concluded that t6Ado is required for proper codon-anticodon interaction.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avital S., Elson D. A convenient procedure for preparing transfer ribonucleic acid from Escherichia coli. Biochim Biophys Acta. 1969 Apr 22;179(2):297–307. doi: 10.1016/0005-2787(69)90038-0. [DOI] [PubMed] [Google Scholar]
- Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
- Chen C. M., Ofengand J. Inactivation of the Tu-GTP recognition site in aminoacyl-tRNA by chemical modification of the tRNA. Biochem Biophys Res Commun. 1970 Oct 9;41(1):190–198. doi: 10.1016/0006-291x(70)90487-0. [DOI] [PubMed] [Google Scholar]
- Chheda G. B., Hall R. H., Mozejko J., Magrath D. I., Schweizer M. P., Stasiuk L., Taylor P. R. Aminoacyl nucleosides. VI. Isolation and preliminary characterization of threonyladenine derivatives from transfer ribonucleic acid. Biochemistry. 1969 Aug;8(8):3278–3282. doi: 10.1021/bi00836a022. [DOI] [PubMed] [Google Scholar]
- Chheda G. B., Hong C. I., Piskorz C. F., Harmon G. A. Biosynthesis of N-(purin-6-ylcarbamoyl)-L-threonine riboside. Incorporation of L-threonine in vivo into modified nucleoside of transfer ribonucleic acid. Biochem J. 1972 Apr;127(3):515–519. doi: 10.1042/bj1270515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dube S. K., Marcker K. A., Clark B. F., Cory S. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature. 1968 Apr 20;218(5138):232–233. doi: 10.1038/218232a0. [DOI] [PubMed] [Google Scholar]
- Elkins B. N., Keller E. B. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. Biochemistry. 1974 Oct 22;13(22):4622–4628. doi: 10.1021/bi00719a024. [DOI] [PubMed] [Google Scholar]
- Faulkner R. D., Uziel M. Iodine modification of E. coli tRNA Phe : reversible modification of 2-methylthio-N 6 -isopentenyladenosine and lack of disulfide formation. Biochim Biophys Acta. 1971 May 27;238(3):464–474. doi: 10.1016/0005-2787(71)90620-4. [DOI] [PubMed] [Google Scholar]
- Fittler F., Hall R. H. Selective modification of yeast seryl-t-RNA and its effect on the acceptance and binding functions. Biochem Biophys Res Commun. 1966 Nov 22;25(4):441–446. doi: 10.1016/0006-291x(66)90225-7. [DOI] [PubMed] [Google Scholar]
- Freier S. M., Tinoco I., Jr The binding of complementary oligoribonucleotides to yeast initiator Transfer RNA. Biochemistry. 1975 Jul 29;14(15):3310–3314. doi: 10.1021/bi00686a004. [DOI] [PubMed] [Google Scholar]
- Friedman S. Acylation of transfer ribonucleic acid with the N-hydroxysuccinimide ester of phenoxyacetic acid. Biochemistry. 1972 Aug 29;11(18):3435–3443. doi: 10.1021/bi00768a017. [DOI] [PubMed] [Google Scholar]
- Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
- Ghosh K., Ghosh H. P. Role of modified nucleoside adjacent to 3'-end of anticodon in codon-anticodon interaction. Biochem Biophys Res Commun. 1970 Jul 13;40(1):135–143. doi: 10.1016/0006-291x(70)91057-0. [DOI] [PubMed] [Google Scholar]
- Hall B. G., Gallant J. A. Effect of the RC gene product on constitutive enzyme synthesis. J Mol Biol. 1971 Oct 14;61(1):271–273. doi: 10.1016/0022-2836(71)90225-7. [DOI] [PubMed] [Google Scholar]
- Henes C., Krauskopf M., Ofengand J. A simple one-step method for the preparation of highly purified formylmethionine transfer ribonucleic acid and methionine transfer ribonucleic acid from Escherichia coli. Biochemistry. 1969 Jul;8(7):3024–3028. doi: 10.1021/bi00835a051. [DOI] [PubMed] [Google Scholar]
- Högenauer G., Turnowsky F., Unger F. M. Codon-anticodon interaction of methionine specific tRNAs. Biochem Biophys Res Commun. 1972 Mar 24;46(6):2100–2106. doi: 10.1016/0006-291x(72)90765-6. [DOI] [PubMed] [Google Scholar]
- Kan L. S., Ts'o P. O., von der Haar F., Sprinzl M., Cramer F. Proton magnetic resonance studies on the conformation of the hexanucleotide, GmpApApYpApsiP, and Related fragments from the anticodong loop of baker's yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1975 Jul 15;14(14):3278–3291. doi: 10.1021/bi00685a038. [DOI] [PubMed] [Google Scholar]
- Kimura-Harada F., Harada F., Nishimura S. The presence of N-[9-(c-D-ribofuranosyl)purin-6-ylcarbamoyl] threonine in isoleucine, threonine and asparagine tRNAs from Escherichia coli. FEBS Lett. 1972 Mar;21(1):71–74. doi: 10.1016/0014-5793(72)80166-2. [DOI] [PubMed] [Google Scholar]
- Krauskopf M., Chen C. M., Ofengand J. Interaction of fragmented and cross-linked Escherichia coli valine transfer ribonucleic acid with T u factor-guanosine triphosphate complex. J Biol Chem. 1972 Feb 10;247(3):842–850. [PubMed] [Google Scholar]
- Körner A., Söll D. N-(purin-6-ylcarbamoyl)threonine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. FEBS Lett. 1974 Mar 1;39(3):301–306. doi: 10.1016/0014-5793(74)80135-3. [DOI] [PubMed] [Google Scholar]
- Miller J. P., Hirst-Bruns M. E., Philipps G. R. Action of venom phosphodiesterase on transfer RNA from Escherichia coli. Biochim Biophys Acta. 1970 Sep 17;217(1):176–188. doi: 10.1016/0005-2787(70)90134-6. [DOI] [PubMed] [Google Scholar]
- Miller J. P., Philipps G. R. Purification of transfer-RNA-nucleotidyltransferase from E. coli B. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1174–1179. doi: 10.1016/0006-291x(70)90363-3. [DOI] [PubMed] [Google Scholar]
- Miller J. P., Philipps G. R. Transfer ribonucleic acid nucleotidyltransferase from Escherichia coli. II. Purification, physical properties, and substrate specificity. J Biol Chem. 1971 Mar 10;246(5):1274–1279. [PubMed] [Google Scholar]
- Miller J. P., Schweizer M. P. Determination of N-(9-( -D-ribofuranosyl)purin-6-ylcarbamoly)threonine at the picomole level in transfer-RNA. Anal Biochem. 1972 Dec;50(2):327–336. doi: 10.1016/0003-2697(72)90041-3. [DOI] [PubMed] [Google Scholar]
- NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
- Ohashi Z., Maeda M., McCloskey J. A., Nishimura S. 3-(3-Amino-3-carboxypropyl)uridine: a novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid. Biochemistry. 1974 Jun 4;13(12):2620–2625. doi: 10.1021/bi00709a023. [DOI] [PubMed] [Google Scholar]
- Parthasarathy R., Ohrt J. M., Chheda G. B. Conformation and possible role of hypermodified nucleosides adjacent to 3'-end of anticodon in tRNA: N-(purin-6-ylcarbamoyl)-L-threonine riboside. Biochem Biophys Res Commun. 1974 Sep 9;60(1):211–218. doi: 10.1016/0006-291x(74)90193-4. [DOI] [PubMed] [Google Scholar]
- Philipps G. R. Binding of transfer ribonucleic acid to ribosomes. Comparison of the nonenzymatic binding of aminoacylated and deacylated transfer ribonucleic acid. J Biol Chem. 1970 Feb 25;245(4):859–868. [PubMed] [Google Scholar]
- Powers D. M., Peterkofsky A. The presence of N-(purin-6-ylcarbamoyl)threonine in transfer ribonucleic acid species whose codons begin with adenine. J Biol Chem. 1972 Oct 25;247(20):6394–6401. [PubMed] [Google Scholar]
- Schweizer M. P., Chheda G. B., Baczynskyj L., Hall R. H. Aminoacyl nucleosides. VII. N-(Purin-6-ylcarbamoyl)threonine. A new component of transfer ribonucleic acid. Biochemistry. 1969 Aug;8(8):3283–3289. doi: 10.1021/bi00836a023. [DOI] [PubMed] [Google Scholar]
- Schweizer M. P., McGrath K., Baczynskyj L. The isolation and characterization of N-[9-(beta-D-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast transfer RNA. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1046–1052. doi: 10.1016/0006-291x(70)90899-5. [DOI] [PubMed] [Google Scholar]
- Schweizer M. P., Thedford R., Slama J. Synthesis and conformational properties of diribonucleoside monophosphates containing modified nucleosides as found in transfer RNA. Biochim Biophys Acta. 1971 Mar 11;232(2):217–226. doi: 10.1016/0005-2787(71)90573-9. [DOI] [PubMed] [Google Scholar]
- Stewart J. W., Sherman F., Shipman N. A., Jackson M. Identification and mutational relocation of the AUG codon initiating translation of iso-1-cytochrome c in yeast. J Biol Chem. 1971 Dec 25;246(24):7429–7445. [PubMed] [Google Scholar]
- Takemura S., Murakami M., Miyazaki M. Nucleotide sequence of isoleucine transfer RNA from Torulopsis utilis. J Biochem. 1969 Mar;65(3):489–491. doi: 10.1093/oxfordjournals.jbchem.a129040. [DOI] [PubMed] [Google Scholar]
- Thedford R., Straus D. B. Some helical interactions of poly(N6-(delta 2-isopentenyl)adenylic acid). Biochemistry. 1974 Jan 29;13(3):535–542. doi: 10.1021/bi00700a021. [DOI] [PubMed] [Google Scholar]
- Thiebe R., Zachau H. G. A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Eur J Biochem. 1968 Sep 24;5(4):546–555. doi: 10.1111/j.1432-1033.1968.tb00404.x. [DOI] [PubMed] [Google Scholar]
- Weiss J. F., Pearson R. L., Kelmers A. D. Two additional reversed-phase chromatographic systems for the separation of transfer ribonucleic acids and their application to the preparation of two formylmethionine and a valine transfer ribonucleic acid from Escherichia coli B. Biochemistry. 1968 Oct;7(10):3479–3487. doi: 10.1021/bi00850a024. [DOI] [PubMed] [Google Scholar]
- Weissbach H., Miller D. L., Hachmann J. Studies on the role of factor Ts in polypeptide synthesis. Arch Biochem Biophys. 1970 Mar;137(1):262–269. doi: 10.1016/0003-9861(70)90433-9. [DOI] [PubMed] [Google Scholar]
- Wimmer E., Maxwell I. H., Tener G. M. A simple method for isolating highly purified yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1968 Jul;7(7):2623–2628. doi: 10.1021/bi00847a026. [DOI] [PubMed] [Google Scholar]
- Yarus M., Barrell B. G. The sequence of nucleotides in tRNA Ile from E. coli B. Biochem Biophys Res Commun. 1971 May 21;43(4):729–734. doi: 10.1016/0006-291x(71)90676-0. [DOI] [PubMed] [Google Scholar]
- Yoshikami D., Keller E. B. Chemical modification of the fluorescent base in phenylalanine transfer ribonucleic acid. Biochemistry. 1971 Jul 20;10(15):2969–2976. doi: 10.1021/bi00791a027. [DOI] [PubMed] [Google Scholar]