Abstract
2'(3')-O-L-Phenylalanylderivatives of fluorescent 1,N6-ethenoadenosine and 3,N4-ethenocytidine were prepared by chemical synthesis. Both compounds are good acceptor substrates in ribosomal peptidyltransferase reactions. Since these compounds cannot form Watson-Crick base pairs, the results indicate that the terminal aminoacyladenosine unit of AA-tRNA is bound to ribosomal protein on the acceptor site of peptidyltransferase and not to rRNA.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrio J. R., Secrist J. A., 3rd, Leonard N. J. Fluorescent adenosine and cytidine derivatives. Biochem Biophys Res Commun. 1972 Jan 31;46(2):597–604. doi: 10.1016/s0006-291x(72)80181-5. [DOI] [PubMed] [Google Scholar]
- Chládek S., Ringer D., Quiggle K. "Nonisomerizable" 2'-and 3'-O-aminoacyl dinucleoside phosphates. Chemical synthesis and acceptor activity in the ribosomal peptidyltransferase reaction. Biochemistry. 1974 Jun 18;13(13):2727–2735. doi: 10.1021/bi00710a011. [DOI] [PubMed] [Google Scholar]
- Chládek S., Ringer D., Zemlicka J. L-Phenylalanine esters of open-chain analog of adenosine as substrates for ribosomal peptidyl transferase. Biochemistry. 1973 Dec 4;12(25):5135–5138. doi: 10.1021/bi00749a017. [DOI] [PubMed] [Google Scholar]
- Greenfield J. C., Leonard N. J., Gumport R. I. Nicotinamide 3,N4-ethenocytosine dinucleotide, an analog of nicotinamide adenine dinucleotide. Synthesis and enzyme studies. Biochemistry. 1975 Feb 25;14(4):698–706. doi: 10.1021/bi00675a009. [DOI] [PubMed] [Google Scholar]
- Greenwell P., Harris R. J., Symons R. H. Affinity labelling of 23-S ribosomal RNA in the active centre of Escherichia coli peptidyl transferase. Eur J Biochem. 1974 Dec 2;49(3):539–544. doi: 10.1111/j.1432-1033.1974.tb03858.x. [DOI] [PubMed] [Google Scholar]
- Janik B., Sommer R. G., Kotick M. P., Wilson D. P., Erickson J. Synthesis and properties of poly (1,N-6-ethenoadenylic acid) and poly (3,N-4-ethenocytidylic acid). Physiol Chem Phys. 1973;5(1):27–36. [PubMed] [Google Scholar]
- Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHANS D., NEIDLE A. Structural requirements for puromycin inhibition of protein synthesis. Nature. 1963 Mar 16;197:1076–1077. doi: 10.1038/1971076a0. [DOI] [PubMed] [Google Scholar]
- Ringer D., Quiggle K., Chládek S. Recognition of the 3' terminus of 2'-O-aminoacyl transfer ribonucleic acid by the acceptor site of ribosomal peptidyltransferase. Biochemistry. 1975 Feb 11;14(3):514–520. doi: 10.1021/bi00674a009. [DOI] [PubMed] [Google Scholar]
- Rychlík I., Cerná J., Chládek S., Zemlicka J., Haladová Z. Substrate specificity of ribosomal peptidyl transferase: 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain on the amino acid site. J Mol Biol. 1969 Jul 14;43(1):13–24. doi: 10.1016/0022-2836(69)90075-8. [DOI] [PubMed] [Google Scholar]
- Secrist J. A., 3rd, Barrio J. R., Leonard N. J., Weber G. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry. 1972 Sep 12;11(19):3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
- Spencer R. D., Weber G., Tolman G. L., Barrio J. R., Leonard N. J. Species responsible for the fluorescence of 1:N6-ethenoadenosine. Eur J Biochem. 1974 Jun 15;45(2):425–429. doi: 10.1111/j.1432-1033.1974.tb03566.x. [DOI] [PubMed] [Google Scholar]
- Zemlicka J., Chládek S., Ringer D., Quiggle K. Substrate specificity of ribosomal peptidyltransferase. Effect of modification in the heterocyclic, carbohydrate and amino acid moiety of 2'(3')-O-L-phenylalanyladenosine. Biochemistry. 1975 Dec 2;14(24):5239–5249. doi: 10.1021/bi00695a001. [DOI] [PubMed] [Google Scholar]