Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jan;81(2):630–634. doi: 10.1073/pnas.81.2.630

Na+-H+ exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: The role of glucocorticoids.

J Kinsella, T Cujdik, B Sacktor
PMCID: PMC344733  PMID: 6320201

Abstract

Amiloride-sensitive Na+ -H+ exchange activity in brush border membrane vesicles isolated from rat proximal tubule was increased in metabolic acidosis. The enhancement of exchange activity required an intact adrenal gland or glucocorticoid supplements. Ammonium and phosphate excretions were increased during acidosis and these were also largely dependent on an intact adrenal gland or glucocorticoid supplements. Amiloride-insensitive Na+ uptake and passive H+ permeability were not altered by acidosis or the glucocorticoid status of the animal. These findings are consistent with glucocorticoids having an important regulatory role in the kidney by orchestrating the proximal tubular adaptation to metabolic acidosis.

Full text

PDF
632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON J., FOSTER J. B. The effect of cortisone on urinary phosphate excretion in man. Clin Sci. 1959 Aug;18:437–439. [PubMed] [Google Scholar]
  2. Alleyne G. A., Barnswell J., McFarlane-Anderson N., Alexander J. E. Renal ammoniagenic factor in the plasma of rats with acute metabolic acidosis. Am J Physiol. 1981 Aug;241(2):F112–F116. doi: 10.1152/ajprenal.1981.241.2.F112. [DOI] [PubMed] [Google Scholar]
  3. Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
  4. Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
  5. BALAGURA S., PITTS R. F. Excretion of ammonia injected into renal artery. Am J Physiol. 1962 Jul;203:11–14. doi: 10.1152/ajplegacy.1962.203.1.11. [DOI] [PubMed] [Google Scholar]
  6. Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
  7. Burg M., Green N. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am J Physiol. 1977 Oct;233(4):F307–F314. doi: 10.1152/ajprenal.1977.233.4.F307. [DOI] [PubMed] [Google Scholar]
  8. Burnham C., Munzesheimer C., Rabon E., Sachs G. Ion pathways in renal brush border membranes. Biochim Biophys Acta. 1982 Mar 8;685(3):260–272. doi: 10.1016/0005-2736(82)90066-9. [DOI] [PubMed] [Google Scholar]
  9. CHRISTY N. P., LARAGH J. H. Pathogenesis of hypokalemic alkalosis in Cushing's syndrome. N Engl J Med. 1961 Nov 30;265:1083–1088. doi: 10.1056/NEJM196111302652203. [DOI] [PubMed] [Google Scholar]
  10. Dubrovsky A. H., Nair R. C., Byers M. K., Levine D. Z. Renal net acid excretion in the adrenalectomized rat. Kidney Int. 1981 Apr;19(4):516–528. doi: 10.1038/ki.1981.49. [DOI] [PubMed] [Google Scholar]
  11. Freiberg J. M., Kinsella J., Sacktor B. Glucocorticoids increase the Na+-H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4932–4936. doi: 10.1073/pnas.79.16.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frick A., Durasin I. Acute effects of hydrocortisone on the reabsorption of inorganic phosphate in normal, adrenalectomized and parathyroidectomized rats. Pflugers Arch. 1979 Nov;382(2):123–126. doi: 10.1007/BF00584212. [DOI] [PubMed] [Google Scholar]
  13. Frick A., Durasin I. Proximal tubular reabsorption of inorganic phosphate in adrenalectomized rats. Pflugers Arch. 1980 Jun;385(3):189–192. doi: 10.1007/BF00647456. [DOI] [PubMed] [Google Scholar]
  14. Hulter H. N., Licht J. H., Bonner E. L., Jr, Glynn R. D., Sebastian A. Effects of glucocorticoid steroids on renal and systemic acid-base metabolism. Am J Physiol. 1980 Jul;239(1):F30–F43. doi: 10.1152/ajprenal.1980.239.1.F30. [DOI] [PubMed] [Google Scholar]
  15. Hulter H. N., Sigala J. F., Sebastian A. Effects of dexamethasone on renal and systemic acid-base metabolism. Kidney Int. 1981 Jul;20(1):43–49. doi: 10.1038/ki.1981.102. [DOI] [PubMed] [Google Scholar]
  16. Kempson S. A. Effect of metabolic acidosis on renal brushborder membrane adaptation to low phosphorus diet. Kidney Int. 1982 Sep;22(3):225–233. doi: 10.1038/ki.1982.159. [DOI] [PubMed] [Google Scholar]
  17. Kinsella J. L., Aronson P. S. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1981 Oct;241(4):F374–F379. doi: 10.1152/ajprenal.1981.241.4.F374. [DOI] [PubMed] [Google Scholar]
  18. Kinsella J. L., Aronson P. S. Determination of the coupling ratio for Na+ -H+ exchange in renal microvillus membrane vesicles. Biochim Biophys Acta. 1982 Jul 14;689(1):161–164. doi: 10.1016/0005-2736(82)90200-0. [DOI] [PubMed] [Google Scholar]
  19. Kinsella J. L., Aronson P. S. Interaction of NH4+ and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am J Physiol. 1981 Nov;241(5):C220–C226. doi: 10.1152/ajpcell.1981.241.5.C220. [DOI] [PubMed] [Google Scholar]
  20. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  21. Levine B. S., Ho K., Kraut J. A., Coburn J. W., Kurokawa K. Effect of metabolic acidosis on phosphate transport by the renal brush-border membrane. Biochim Biophys Acta. 1983 Jan 5;727(1):7–12. doi: 10.1016/0005-2736(83)90362-0. [DOI] [PubMed] [Google Scholar]
  22. Mishina T., Scholer D. W., Edelman I. S. Glucocorticoid receptors in rat kidney cortical tubules enriched in proximal and distal segments. Am J Physiol. 1981 Jan;240(1):F38–F45. doi: 10.1152/ajprenal.1981.240.1.F38. [DOI] [PubMed] [Google Scholar]
  23. Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
  24. Perez G. O., Oster J. R., Katz F. H., Vaamonde C. A. The effect of acute metabolic acidosis on plasma cortisol, renin activity and aldosterone. Horm Res. 1979;11(1):12–21. doi: 10.1159/000179033. [DOI] [PubMed] [Google Scholar]
  25. SARTORIUS O. W., CALHOON D., PITTS R. F. Studies on the interrelationships of the adrenal cortex and renal ammonia excretion by the rat. Endocrinology. 1953 Mar;52(3):256–265. doi: 10.1210/endo-52-3-256. [DOI] [PubMed] [Google Scholar]
  26. Ullrich K. J., Rumrich G., Baumann K. Renal proximal tubular buffer-(glycodiazine) transport. Inhomogeneity of local transport rate, dependence on sodium, effect of inhibitors and chronic adaptation. Pflugers Arch. 1975 Jun 26;357(3-4):149–163. doi: 10.1007/BF00585971. [DOI] [PubMed] [Google Scholar]
  27. Wilcox C. S., Cemerikic D. A., Giebisch G. Differential effects of acute mineralo- and glucocorticosteroid administration on renal acid elimination. Kidney Int. 1982 Apr;21(4):546–556. doi: 10.1038/ki.1982.61. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES