Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Feb;81(4):1253–1257. doi: 10.1073/pnas.81.4.1253

Kindling alters the calcium/calmodulin-dependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus.

C G Wasterlain, D B Farber
PMCID: PMC344805  PMID: 6322192

Abstract

Septal kindling was associated with an inhibition of the post hoc phosphorylation of several synaptic plasma membrane proteins of rat hippocampus. In control rats, the 32P incorporation into proteins of molecular weights 50,000, 58,000, and 60,000 was markedly stimulated by combined calcium/calmodulin, whereas in kindled animals, the response to combined calcium/calmodulin was reduced. Calcium alone, cAMP, or cGMP modulated 32P incorporation into several synaptic plasma membrane proteins but did not differentiate control from kindled tissues. Both control and kindled rats showed nonspecific inhibition of calcium/calmodulin-stimulated phosphorylation in the post hoc assay by corticotropin and by [Leu]enkephalin. The differences between control and kindled animals were most striking in hippocampus and in the amygdaloid-entorhinal area; less pronounced in cortex, basal ganglia, and brain stem; and not significant in cerebellum, a region where kindling cannot be elicited. An 8-wk period of rest after kindling did not reduce these changes, suggesting that they may be a persistent as the kindling behavior itself.

Full text

PDF
1256

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byrne M. C., Gottlieb R., McNamara J. O. Amygdala kindling induces muscarinic cholinergic receptor declines in a highly specific distribution within the limbic system. Exp Neurol. 1980 Jul;69(1):85–98. doi: 10.1016/0014-4886(80)90145-4. [DOI] [PubMed] [Google Scholar]
  2. De Robertis E. Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science. 1967 May 19;156(3777):907–914. doi: 10.1126/science.156.3777.907. [DOI] [PubMed] [Google Scholar]
  3. DeLorenzo R. J., Freedman S. D. Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1036–1043. doi: 10.1016/s0006-291x(77)80082-x. [DOI] [PubMed] [Google Scholar]
  4. DeLorenzo R. J. Role of calmodulin in neurotransmitter release and synaptic function. Ann N Y Acad Sci. 1980;356:92–109. doi: 10.1111/j.1749-6632.1980.tb29603.x. [DOI] [PubMed] [Google Scholar]
  5. Engel J., Jr, Sharpless N. S. Long-lasting depletion of dopamine in the rat amygdala induced by kindling stimulation. Brain Res. 1977 Nov 11;136(2):381–386. doi: 10.1016/0006-8993(77)90815-0. [DOI] [PubMed] [Google Scholar]
  6. Farjo I. B., Blackwood D. H. Reduction in tyrosine hydroxylase activity in the rat amygdala induced by kindling stimulation. Brain Res. 1978 Sep 22;153(2):423–426. doi: 10.1016/0006-8993(78)90427-4. [DOI] [PubMed] [Google Scholar]
  7. Gee K. W., Hollinger M. A., Bowyer J. F., Killam E. K. Modification of dopaminergic receptor sensitivity in rat brain after amygdaloid kindling. Exp Neurol. 1979 Dec;66(3):771–777. doi: 10.1016/0014-4886(79)90220-6. [DOI] [PubMed] [Google Scholar]
  8. Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
  9. Goddard G. V., McIntyre D. C., Leech C. K. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969 Nov;25(3):295–330. doi: 10.1016/0014-4886(69)90128-9. [DOI] [PubMed] [Google Scholar]
  10. Hamon M., Bourgoin S., Héry F., Simonnet G. Activation of tryptophan hydroxylase by adenosine triphosphate, magnesium, and calcium. Mol Pharmacol. 1978 Jan;14(1):99–110. [PubMed] [Google Scholar]
  11. Kennedy M. B., Greengard P. Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1293–1297. doi: 10.1073/pnas.78.2.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krueger B. K., Forn J., Greengard P. Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem. 1977 Apr 25;252(8):2764–2773. [PubMed] [Google Scholar]
  13. McNamara J. O., Peper A. M., Patrone V. Repeated seizures induce long-term increase in hippocampal benzodiazepine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):3029–3032. doi: 10.1073/pnas.77.5.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McNamara J. O. Selective alterations of regional beta-adrenergic receptor binding in the kindling model of epilepsy. Exp Neurol. 1978 Sep 15;61(3):582–591. doi: 10.1016/0014-4886(78)90025-0. [DOI] [PubMed] [Google Scholar]
  15. Racine R. J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281–294. doi: 10.1016/0013-4694(72)90177-0. [DOI] [PubMed] [Google Scholar]
  16. Sorensen R. G., Kleine L. P., Mahler H. R. Presynaptic localization of phosphoprotein B-50. Brain Res Bull. 1981 Jul;7(1):57–61. doi: 10.1016/0361-9230(81)90098-8. [DOI] [PubMed] [Google Scholar]
  17. Wasterlain C. G., Farber D. B. A lasting change in protein phosphorylation associated with septal kindling. Brain Res. 1982 Sep 9;247(1):191–194. doi: 10.1016/0006-8993(82)91050-2. [DOI] [PubMed] [Google Scholar]
  18. Wasterlain C. G., Morin A. M., Jonec V. Interactions between chemical and electrical kindling of the rat amygdala. Brain Res. 1982 Sep 16;247(2):341–346. doi: 10.1016/0006-8993(82)91259-8. [DOI] [PubMed] [Google Scholar]
  19. Yamauchi T., Nakata H., Fujisawa H. A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization. J Biol Chem. 1981 Jun 10;256(11):5404–5409. [PubMed] [Google Scholar]
  20. Zwiers H., Schotman P., Gispen W. H. Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes. J Neurochem. 1980 Jun;34(6):1689–1699. doi: 10.1111/j.1471-4159.1980.tb11262.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES