Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Mar;81(5):1406–1410. doi: 10.1073/pnas.81.5.1406

Crambin in phospholipid vesicles: Circular dichroism analysis of crystal structure relevance

B A Wallace , N Kohl , M M Teeter
PMCID: PMC344844  PMID: 16593429

Abstract

Crambin, a hydrophobic plant seed protein that exhibits sequence homology to membrane-active plant toxins, was incorporated into phospholipid vesicles. Circular dichroism spectroscopy indicates that its structure in vesicles is nearly identical to its structure in 60% ethanol solution, the solvent from which the protein was crystallized. The secondary structure predicted from the circular dichroism data of the ethanol solution closely resembles that determined by x-ray diffraction of the crystals. This agreement suggests that the x-ray structure may form a useful basis for modeling the structure and behavior of lipophilic plant toxins. Finally, because the structure of crambin has been determined in an organic solvent medium, it provides a protein standard for examination of the effect of solvent dipole moment on the circular dichroism spectra of proteins, which may be important for interpretation of data for membrane proteins.

Keywords: membrane proteins, secondary structure, plant toxins

Full text

PDF
1410

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. C., Isenberg I. On the analysis of circular dichroic spectra of proteins. Biochemistry. 1976 Feb 10;15(3):629–634. doi: 10.1021/bi00648a028. [DOI] [PubMed] [Google Scholar]
  2. Carrasco L., Vázquez D., Hernández-Lucas C., Carbonero P., García-Olmedo F. Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem. 1981 May;116(1):185–189. doi: 10.1111/j.1432-1033.1981.tb05317.x. [DOI] [PubMed] [Google Scholar]
  3. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Mak A. S., Jones B. L. The amino acid sequence of wheat beta-purothionin. Can J Biochem. 1976 Oct;54(10):835–842. doi: 10.1139/o76-120. [DOI] [PubMed] [Google Scholar]
  6. Mao D., Wachter E., Wallace B. A. Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry. 1982 Sep 28;21(20):4960–4968. doi: 10.1021/bi00263a020. [DOI] [PubMed] [Google Scholar]
  7. Rossi J. D., Wallace B. A. Binding of fibronectin to phospholipid vesicles. J Biol Chem. 1983 Mar 10;258(5):3327–3331. [PubMed] [Google Scholar]
  8. Samuelsson G., Seger L., Olson T. The amino acid sequence of oxidized viscotoxin A3 from the European mistletoe (Viscum album L, Loranthaceae). Acta Chem Scand. 1968;22(8):2624–2642. doi: 10.3891/acta.chem.scand.22-2624. [DOI] [PubMed] [Google Scholar]
  9. Schneider A. S., Harmatz D. An experimental method correcting for absorption flattening and scattering in suspensions of absorbing particles: circular dichroism and absorption spectra of hemoglobin in situ in red blood cells. Biochemistry. 1976 Sep 21;15(19):4158–4162. doi: 10.1021/bi00664a004. [DOI] [PubMed] [Google Scholar]
  10. Segrest J. P., Jackson R. L., Morrisett J. D., Gotto A. M., Jr A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 1974 Jan 15;38(3):247–258. doi: 10.1016/0014-5793(74)80064-5. [DOI] [PubMed] [Google Scholar]
  11. Teeter M. M., Hendrickson W. A. Highly ordered crystals of the plant seed protein crambin. J Mol Biol. 1979 Jan 15;127(2):219–223. doi: 10.1016/0022-2836(79)90242-0. [DOI] [PubMed] [Google Scholar]
  12. Teeter M. M., Mazer J. A., L'Italien J. J. Primary structure of the hydrophobic plant protein crambin. Biochemistry. 1981 Sep 15;20(19):5437–5443. doi: 10.1021/bi00522a013. [DOI] [PubMed] [Google Scholar]
  13. Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wallace B. A., Blout E. R. Conformation of an oligopeptide in phospholipid vesicles. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1775–1779. doi: 10.1073/pnas.76.4.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wallace B. A., Veatch W. R., Blout E. R. Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry. 1981 Sep 29;20(20):5754–5760. doi: 10.1021/bi00523a018. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES