Abstract
The potential of spent medium to support the growth and recombinant protein production of High-Five™ cells was investigated. Growth in medium consisting of three parts fresh and one part spent medium was comparable to that in fresh medium (maximal specific growth rates of 0.028 and 0.029 h−1, and maximal cell densities of 4 and 4.5 × 106 cells ml−1, respectively). Glucose exhaustion coincided with an abrupt decrease of viability. Of 15 amino acids analyzed, not a single one was completely exhausted at the end of the growth phase. Growth in medium consisting of equal parts spent and fresh medium led to lower maximal cell concentration (2.9 × 106 cells ml−1) with a smoother death phase. Glucose supplementation at the beginning of the culture or at the end of the growth phase did not lead to an increase of either the maximal cell density or the specific growth rate. Infection of High-Five™ cells at three different densities (1.4, 2.5 and 4.2 × 106 cells ml−1) without medium change led to monotonically decreased specific productions for β-galactosidase. Partial (75%) or total medium replacement at the higher infection density restored the specific production at the levels of the intermediate density infection (321, 292 and 389 U.(106 cells)−1, respectively).
Keywords: Conditioned medium, Glucose supplementation, High-Five™ cells, Serum-free medium, β-galactosidase, Insect cell–baculovirus expression vector system (BEVS)
Full Text
The Full Text of this article is available as a PDF (120.3 KB).
References
- Agathos S.N. Insect cell bioreactors. Cytotechnology. 1996;20:173–189. doi: 10.1007/BF00350398. [DOI] [PubMed] [Google Scholar]
- Agathos S.N., Jeong Y.-H., Venkat K. Growth kinetics of free and immobilized insect cell cultures. Ann NY Acad Sci. 1990;589:372–398. doi: 10.1111/j.1749-6632.1990.tb24259.x. [DOI] [PubMed] [Google Scholar]
- Bédard C., Jolicoeur M., Jardin B., Tom R., Perret S., Kamen A. Insect cell density in bioreactor cultures can be estimated from on-line measurements of optical density. Biotechnol Tech. 1994;8:605–610. [Google Scholar]
- Bédard C., Kamen A., Tom R.&, Massie B. Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology. 1994;15:129–138. doi: 10.1007/BF00762387. [DOI] [PubMed] [Google Scholar]
- Bédard C., Perret S., Kamen A.A. Fed-batch culture of Sf-9 cells supports 3 x 107 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol Lett. 1997;19:629–632. [Google Scholar]
- Bédard C., Tom R., Kamen A. Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTIEAA insect cell cultures: Insights into growth limitation and metabolism. Biotechnol Prog. 1993;9:615–624. doi: 10.1021/bp00024a008. [DOI] [PubMed] [Google Scholar]
- Chico E., Jäger V. Perfusion culture of baculovirus-infected BTI-Tn-5B1-4 insect cells: A method to restore cell-specific β-trace glycoprotein productivity at high cell density. Biotechnol Bioeng. 2000;70:574–586. doi: 10.1002/1097-0290(20001205)70:5<574::aid-bit12>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Dee K.U., Shuler M.L., Wood H.A. Inducing single-cell suspension of BTI-TN5B1-4 insect cells: I. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol Bioeng. 1997;54:191–205. doi: 10.1002/(SICI)1097-0290(19970505)54:3<191::AID-BIT1>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- Donaldson M., Wood H.A., Kulakosky P.C., Shuler M.L. Glycosylation of a recombinant protein in the Tn5B1-4 insect cell line: Influence of ammonia, time of harvest, temperature, and dissolved oxygen. Biotechnol Bioeng. 1999;63:255–262. doi: 10.1002/(sici)1097-0290(19990505)63:3<255::aid-bit1>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
- Doverskog M., Bertram E., Ljunggren J., Öhman L., Sennerstam R., Häggström L. Cell cycle progression in serum-free cultures of Sf9 insect cells: modulation by conditioned medium factors and implications for proliferation and productivity. Biotechnol Prog. 2000;16:837–846. doi: 10.1021/bp000108i. [DOI] [PubMed] [Google Scholar]
- Doverskog M., Ljunggren J., Öhman L., Häggström L. Physiology of cultured animal cells. J Biotechnol. 1997;59:103–115. doi: 10.1016/s0168-1656(97)00172-7. [DOI] [PubMed] [Google Scholar]
- Doverskog M., Tally M., Häggström L. Constitutive secretion of an endogenous insulin-like peptide binding protein with high affinity for insulin in Spodoptera frugiperda (Sf9) cell cultures. Biochem Biophys Res Commun. 1999;265:674–679. doi: 10.1006/bbrc.1999.1745. [DOI] [PubMed] [Google Scholar]
- Drews M., Paalme T., Vilu R. The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J Biotechnol. 1995;40:187–198. [Google Scholar]
- Elias C.B., Zeiser A., Bédard C., Kamen A.A. Enhanced growth of Sf-9 cells to a maximum density of 5.2β107 cells per ml and production of β-galactosidase at high cell density by fed batch culture. Biotechnol Bioeng. 2000;68:381–388. doi: 10.1002/(sici)1097-0290(20000520)68:4<381::aid-bit3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Fekkes D., van Dalen A., Edelman M., Voskuilen A. Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phthaldialdehyde. J Chromatogr B. 1995;669:177–186. doi: 10.1016/0378-4347(95)00111-u. [DOI] [PubMed] [Google Scholar]
- Ferkovich S.M., Oberlander H. Growth factors in invertebrate in vitro culture. In Vitro Cell Dev Biol. 1991;27:483–486. doi: 10.1007/BF02631149. [DOI] [PubMed] [Google Scholar]
- Ferrance J.P., Goel A., Ataai M.M. Utilization of glucose and amino acids in insect cells cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnol Bioeng. 1993;42:697–707. doi: 10.1002/bit.260420604. [DOI] [PubMed] [Google Scholar]
- Gilbert R.S., Nagano Y., Yokota T., Hwan S.F., Fletcher T., Lydersen K. Effect of lipids on insect cell growth and expression of recombinant proteins in serum-free medium. Cytotechnology. 1996;22:211–216. doi: 10.1007/BF00353941. [DOI] [PubMed] [Google Scholar]
- Hensler W., Singh V., Agathos S.N. Sf9 insect cell growth and β-galactosidase production in serum and serum-free media. Ann NY Acad Sci. 1994;745:149–166. doi: 10.1111/j.1749-6632.1994.tb44370.x. [DOI] [PubMed] [Google Scholar]
- Ikonomou L., Bastin G., Schneider Y.J., Agathos S.N. Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell Dev Biol-Anim. 2001;37:549–559. doi: 10.1290/1071-2690(2001)037<0549:doaemf>2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Ikonomou L., Drugmand J.C., Bastin G., Schneider Y.J., Agathos S.N. Microcarrier culture of lepidopteran cell lines: Implications for growth and recombinant protein production. Biotechnol Prog. 2002;18:1345–1355. doi: 10.1021/bp0255107. [DOI] [PubMed] [Google Scholar]
- Ikonomou L., Schneider Y.J., Agathos S.N. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol. 2003;62:1–20. doi: 10.1007/s00253-003-1223-9. [DOI] [PubMed] [Google Scholar]
- Jarvis D.L. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology. 2003;310:1–7. doi: 10.1016/s0042-6822(03)00120-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jesionowski G.A., Ataai M.M. An efficient medium for high protein production in the insect cell/baculovirus expression system. Biotechnol Prog. 1997;13:355–360. [Google Scholar]
- JRH Biosciences 2000. EX-CELLTM serum-free media: The 400 Series.
- Kempken R., Büntemeyer H., Lehmann J. The medium cycle bioreactor (MCB): Monoclonal antibody production in a new economic production system. Cytotechnology. 1991;7:63–74. doi: 10.1007/BF00350912. [DOI] [PubMed] [Google Scholar]
- Kioukia N., Al-Rubeai M., Zhang Z., Emery A.N., Nienow A.W., Thomas C.R. A study of uninfected and baculovirus infected Spodoptera frugiperda cells in T-and spinner flasks. Biotechnol Lett. 1995;17:7–12. [Google Scholar]
- Kioukia N., Nienow A.W., Al-Rubeai M., Emery A.N. Influence of agitation and sparging on the growth rate and infection of insect cells in bioreactors and a comparison with hybridoma cultures. Biotechnol Prog. 1996;12:779–785. [Google Scholar]
- Kioukia N., Nienow A.W., Emery A.N.&, Al-Rubeai M. Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J Biotechnol. 1995;38:243–251. doi: 10.1016/0168-1656(94)00128-y. [DOI] [PubMed] [Google Scholar]
- Lauffenburger D., Cozens C. Regulation of mammalian cell growth by autocrine growth factors: Analysis of consequences for inoculum cell density effects. Biotechnol Bioeng. 1989;33:1365–1378. doi: 10.1002/bit.260331102. [DOI] [PubMed] [Google Scholar]
- Lee G.M., Kaminski M.S., Palsson B.O. Observations consistent with autocrine stimulation of hybridoma cell growth and implications for large-scale antibody production. Biotechnol Lett. 1992;14:257–262. [Google Scholar]
- Lindsay D.A., Betenbaugh M.J. Quantification of cell culture factors affecting recombinant protein yields in baculovirus-infected insect cells. Biotechnol Bioeng. 1992;39:614–618. doi: 10.1002/bit.260390605. [DOI] [PubMed] [Google Scholar]
- Luckow V.A. Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Prokop A., Bajpai P., editors. Recombinant DNA Technology and Application. New York: McGraw Hill; 1991. pp. 97–152. [Google Scholar]
- Melkonyan H.S., Chang W.C., Shapiro J.P., Mahadevappa M., Fitzpatrick P.A., Kiefer M.C., Tomei L.D., Umansky S.R. SARPs: A family of secreted apoptosis-related proteins. Proc Natl Acad Sci USA. 1997;94:13636–13641. doi: 10.1073/pnas.94.25.13636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendonca R.Z., Palomares L.A., Ramirez O.T. An insight into insect cell metabolism through selective nutrient manipulation. J Biotechnol. 1999;72:61–75. [Google Scholar]
- Miller J.H. Assay of β-galactosidase. Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory Press; 1972. pp. 352–355. [Google Scholar]
- Nguyen B., Jarnagin K., Williams S., Chan H., Barnett J. Fed-batch culture of insect cells: A method to increase the yield of recombinant human nerve growth factor (rhNGF) in the baculovirus expression system. J Biotechnol. 1993;31:205–217. doi: 10.1016/0168-1656(93)90161-f. [DOI] [PubMed] [Google Scholar]
- Nishino H., Mitsuhashi J. Effects of some mammalian growth promoting substances on insect cell cultures. In Vitro Cell Dev Biol. 1995;31:822–823. doi: 10.1007/BF02634563. [DOI] [PubMed] [Google Scholar]
- Öhman L., Ljunggren J., Häggström L. Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Appl Microbiol Biotechnol. 1995;43:1006–1013. doi: 10.1007/BF00166917. [DOI] [PubMed] [Google Scholar]
- Polazzi E., Gianni T., Contestabile A. Microglial cells protect cerebellar granule neurons from apoptosis: Evidence for reciprocal signaling. Glia. 2001;36:271–280. doi: 10.1002/glia.1115. [DOI] [PubMed] [Google Scholar]
- Radford K.M., Reid S., Greenfield P.F. Substrate limitation in the baculovirus expression vector system. Biotechnol Bioeng. 1997;56:32–44. doi: 10.1002/(SICI)1097-0290(19971005)56:1<32::AID-BIT4>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Reuveny S., Kim Y.J., Kemp C.W., Shiloach J. Production of recombinant proteins in high-density insect cell cultures. Biotechnol Bioeng. 1993;42:235–239. doi: 10.1002/bit.260420211. [DOI] [PubMed] [Google Scholar]
- Rhiel M., Mitchell-Logean C.M., Murhammer D.W. Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High FiveTM) and Spodoptera frugiperda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol Bioeng. 1997;55:909–920. doi: 10.1002/(SICI)1097-0290(19970920)55:6<909::AID-BIT8>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Riese U., Lutkemeyer D., Heidemann R., Büntemeyer H., Lehmann J. Reuse of spent cell culture medium in pilot-scale and rapid preparative purification with membrane chromatography. J Biotechnol. 1994;34:247–257. doi: 10.1016/0168-1656(94)90060-4. [DOI] [PubMed] [Google Scholar]
- Roberts P.L. Growth of insect cells in recycled medium and the use of various serum supplements. Biotechnol Lett. 1984;6:633–638. [Google Scholar]
- Schlaeger E.-J. The protein hydrolysate, Primatone R.L., is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol Methods. 1996;194:191–199. doi: 10.1016/0022-1759(96)00080-4. [DOI] [PubMed] [Google Scholar]
- Taticek R.A., Choi C., Phan S.E., Palomares L.A., Shuler M.L. Comparison of growth and recombinant protein production in two different insect cell lines in attached and suspension culture. Biotechnol Prog. 2001;17:676–684. doi: 10.1021/bp010061g. [DOI] [PubMed] [Google Scholar]
- Taticek R.A., Shuler M.L. Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol Bioeng. 1997;54:142–152. doi: 10.1002/(SICI)1097-0290(19970420)54:2<142::AID-BIT6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Toku K., Tanaka J., Yano H., Desaki J., Zhang B., Yang L.H., Ishihara K., Sakanaka M., Maeda N. Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. J Neurosci Res. 1998;53:415–425. doi: 10.1002/(SICI)1097-4547(19980815)53:4<415::AID-JNR3>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Tom R.L., Debanne M.T., Bédard C., Caron A.W., Massie B., Kamen A.A. Improved yields of the extracellular domain of the epidermal growth factor receptor produced using the baculovirus expression system by medium replacement following infection. Appl Microbiol Biotechnol. 1995;44:53–58. doi: 10.1007/BF00164480. [DOI] [PubMed] [Google Scholar]
- Wang M.-Y., Kwong S., Bentley W.E. Effects of oxygen/ glucose/glutamine feeding on insect cell baculovirus protein expression: A study on epoxide hydrolase production. Biotechnol Prog. 1993;9:355–361. doi: 10.1021/bp00022a002. [DOI] [PubMed] [Google Scholar]
- Wu J.-Y., Ruan Q., Lam H.Y.P. Evaluation of spent medium recycle and nutrient feeding strategies for recombinant protein production in the insect cell-baculovirus process. J Biotechnol. 1998;66:109–116. [Google Scholar]
- Yang J.-D., Gecik P., Collins A., Czarnecki S., Hsu H.-H., Lasdun A., Sundaram R., Muthukumar G.&, Silberklang M. Rational scale-up of a baculovirus-insect batch process based on medium nutritional depth. Biotechnol Bioeng. 1996;52:696–706. doi: 10.1002/(SICI)1097-0290(19961220)52:6<696::AID-BIT7>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]