Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2000 Nov;34(3):225–235. doi: 10.1023/A:1008152205697

Basolateral and canalicular transport of xenobiotics in the hepatocyte: A review

Gonzalo J Diaz 1
PMCID: PMC3449628  PMID: 19003398

Abstract

The molecular and functional characterization of severalproteins involved in the uptake and excretion of xenobioticsand endogenous compounds in the hepatocyte has been achievedthrough intensive research conducted in the past few years.These studies have lead to the identification of specificmembrane transporters located in the basolateral andcanalicular membrane domains of the hepatocyte. The organicanion-transporting polypeptide (OATP), present in thebasolateral membrane of the hepatocyte, is responsible for thetranslocation of xenobiotics from the sinusoidal space into thehepatocyte. Once inside the cell, unconjugated neutral, anionicand cationic xenobiotics can be secreted into bile by themultidrug-resistance P-glycoprotein 1 (MDR1). Conjugatedxenobiotics (e.g. glucuronides and glutathione conjugates) aresecreted into bile by the canalicular multispecific organicanion transporter (cMOAT). Other transporters play keyphysiological roles, including the basolateral uptake of bilesalts (sodium-taurocholate cotransporter, NTCP) and thesecretion into bile of conjugated and unconjugated bile salts(bile salt export pump, BSEP) and phospholipids (MDR2).Experimental approaches used to investigate the role of thebasolateral and canalicular transporters in the hepatocyte haveincluded both in vivo and in vitro models. Animalmodels lacking canalicular transporters include the`hyperbilirubinemic' rats (Groningen-Yellow (GY), Eisaihyperbilirubinemic (EHB) and TR- rats), which aredeficient in the cMOAT protein, and `knock-out' mice, lackingeither the MDR1 or MDR2 transporter. Although no animal modelsare currently available for the study of basolateraltransporters, their function has been conveniently investigatedthrough heterologous expression in Xenopus laevis oocytesand also with basolateral membrane vesicles isolated fromhepatocytes. The total number of basolateral and canaliculartransport proteins present in the hepatocyte is still unknown,but current knowledge indicates that there are at least fourpresent in the basolateral membrane and five in the canaliculardomain. The present review focuses on the current knowledgeabout the most relevant hepatocyte transporters involved in theuptake of foreign and endogenous compounds from the sinusoidalspace and in their active secretion into bile. The first partof the review deals with the basolateral (sinusoidal) transportof organic anions, and the major basolateral transporters (e.g.NTCP, OATP) are described here, both in terms of their knownbiochemistry and physiology. In the second part of the review,the canalicular (apical) transport of organic anions isdiscussed and the biochemistry and physiological role of MDR1,MDR2, cMOAT and BSEP is described in detail. The concludingremarks point out areas of research that need to be addressedin order to answer important questions that still remainunanswered in this important field of study.

Keywords: basolateral transporters, canalicular transporters, multidrug resistance, xenobiotics transport

Full Text

The Full Text of this article is available as a PDF (103.6 KB).

References

  1. Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M, Nomura H, Hebert SC, Matsuno S, Kondo H, Yano H. Molecular characterization and tissue distribution of a new organic anion transporter subtype (aotp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem. 1998;273:22395–22401. doi: 10.1074/jbc.273.35.22395. [DOI] [PubMed] [Google Scholar]
  2. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ. Intestinal MDR transport proteins and P-450 enzymes as barriers to drug delivery. J Controll Release. 1999;62:25–31. doi: 10.1016/s0168-3659(99)00034-6. [DOI] [PubMed] [Google Scholar]
  3. Bossuyt X, Müller M, Meier PJ. Multipecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol. 1996;25:733–738. doi: 10.1016/s0168-8278(96)80246-7. [DOI] [PubMed] [Google Scholar]
  4. Bossuyt X, Müller M, Hagenbuch B, Meier PJ. Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther. 1996;276:891–896. [PubMed] [Google Scholar]
  5. Büchler M, König J, Brom M, Kartenbech J, Spring H, Horie T, Keppler D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMRP, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996;271:15091–15098. doi: 10.1074/jbc.271.25.15091. [DOI] [PubMed] [Google Scholar]
  6. Childs S, Lin Yeh R, Georges E, Ling V. Identification of a sister gene to P-glycoprotein. Cancer Res. 1995;55:2029–2034. [PubMed] [Google Scholar]
  7. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  8. De Vree JML, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze JF, Desrochers M, Bardelski M, Bernard O, Oude Elferink RP, Hadchonel M. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA. 1998;95:282–287. doi: 10.1073/pnas.95.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans WH. A biochemical dissection of the functional polarity of the plasma membrane of the hepatocyte. Biochim Biophys Acta. 1980;604:27–64. doi: 10.1016/0005-2736(80)90584-2. [DOI] [PubMed] [Google Scholar]
  10. Fardel O, Lecureur V, Guillouzo A. The P-glycoprotein multidrug transporter. Gen Pharmacol. 1996;27:1283–1291. doi: 10.1016/s0306-3623(96)00081-x. [DOI] [PubMed] [Google Scholar]
  11. Garrigos M, Mir LM, Orlowski S. Competitive and noncompetitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase. Eur J Biochem. 1997;244:664–673. doi: 10.1111/j.1432-1033.1997.00664.x. [DOI] [PubMed] [Google Scholar]
  12. Gerloff T, Stiegers B, Hagenbuch B, Madon J, Landmann L, Roth J. The sister of P-glycoprotein represents the canalicular bile salt transporter of mammalian liver. J Biol Chem. 1998;273:10046–10050. doi: 10.1074/jbc.273.16.10046. [DOI] [PubMed] [Google Scholar]
  13. Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest. 1994;93:1326–1331. doi: 10.1172/JCI117091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagenbuch B, Stieger B, Foguet M, Lübbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid contransport system. Proc Nat Acad Sci USA. 1991;88:10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall SD, Thummel KE, Watkins PB, Lown KS, Benet LZ, Paine MF, Mayo RR, Turgeon DK, Bailey DG, Fontana RJ, Wrighton SA. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos. 1999;27:161–166. [PubMed] [Google Scholar]
  16. Hirohashi T, Suzuki H, Ito K, Ogawa K, Kume K, Shimizu T, Sugiyama Y. Hepatic expression of multidrug resistance-associated protein-like proteins maintained in Eisai hyperbilirubinemic rats. Mol Pharmacol. 1998;53:1068–1075. [PubMed] [Google Scholar]
  17. Horz JA, Honscha W, Petzinger E. Bumetanide is not transported by the Ntcp of by the oatp: evidence for a third organic anion transporter. Biochim Biophys Acta. 1996;1300:114–118. doi: 10.1016/0005-2760(95)00239-1. [DOI] [PubMed] [Google Scholar]
  18. Ito K, Suzuki H, Hirohashi T, Kume K, Shimizu T, Sugiyama Y. Molecular cloning of canalicular multispecific organic anion transporter defective in EHBR. Am J Physiol. 1997;272:G16–G22. doi: 10.1152/ajpgi.1997.272.1.G16. [DOI] [PubMed] [Google Scholar]
  19. Ito K, Suzuki H, Hirohashi, Kume K, Shimizu T, Sugiyama Y. Functional analysis of canalicular multispecific organic anion transporter cloned from rat liver. J Biol Chem. 1998;273:1684–1688. doi: 10.1074/jbc.273.3.1684. [DOI] [PubMed] [Google Scholar]
  20. Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ. Expression cloning of a rat liver Na+-independent organic anion transporter. Proc Natl Acad Sci USA. 1994;91:133–137. doi: 10.1073/pnas.91.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  22. Kajihara S, Hisatomi A, Mizuta T, Hara T, Ozaki I, Wada I, Yamamoto K. A splice mutation in the human canalicular multispecific organic anion transporter gene causes Dubin-Johnson syndrome. Biochem Biophys Res Commun. 1998;1253:454–457. doi: 10.1006/bbrc.1998.9780. [DOI] [PubMed] [Google Scholar]
  23. Kauffmann HM, Keppler D, Gant TW, Schrenk D. Induction of hepatic mrp2 (cmrp/cmoat) gene expression in nonhuman primates treated with rifampicin or tamoxifen. Arch Toxicol. 1998;72:763–768. doi: 10.1007/s002040050571. [DOI] [PubMed] [Google Scholar]
  24. Kepler D, Arias IM. Introduction: Transport across the hepatocyte canalicular membrane. FASEB J. 1997;11:15–18. doi: 10.1096/fasebj.11.1.9034161. [DOI] [PubMed] [Google Scholar]
  25. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJ, Wilkinson GR. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16:408–414. doi: 10.1023/a:1018877803319. [DOI] [PubMed] [Google Scholar]
  26. Kiuchi Y, Suzuki H, Hirohashi T, Tyson C, Sugiyama Y. cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3) FEBS Lett. 1998;433:149–152. doi: 10.1016/s0014-5793(98)00899-0. [DOI] [PubMed] [Google Scholar]
  27. Kullak-Ublick GA, Hagenbuch B, Stieger B, Schteingart CD, Hoffmann AF, Wolkoff AW, Meier PJ. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology. 1995;109:1274–1282. doi: 10.1016/0016-5085(95)90588-x. [DOI] [PubMed] [Google Scholar]
  28. Kusuhara H, Suzuki H, Sugiyama Y. The role of P-glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs. J Pharmac Sci. 1998;87:1025–1040. doi: 10.1021/js970100b. [DOI] [PubMed] [Google Scholar]
  29. Lincke CR, Smith JJM, van der Velde-Koerst T, Borst P. Structure of the human MDR3 gene and physical mapping of the human MDR locus. J Biol Chem. 1991;266:5303–5310. [PubMed] [Google Scholar]
  30. Makowski P, Pikula S. Participation of the multispecific organic anion transporter in hepatobiliary excretion of glutathione-S-conjugates, drugs and other xenobiotics. Polish J Pharmacol. 1997;49:387–394. [PubMed] [Google Scholar]
  31. Masuda M, I'izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni'inuma K, Suzuki H, Sugiyama Y. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res. 1997;57:3506–3510. [PubMed] [Google Scholar]
  32. Noé B, Hagenbuch B, Stieger B, Meier PJ. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci USA. 1997;94:10346–10350. doi: 10.1073/pnas.94.19.10346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Online Mendelian Inheritance in Man, OMIMTM. Johns Hopkins University, Baltimore, MD. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/.
  34. Oude Elferink RPJ, Jansen PLM. The role of the canalicular multispecific organic anion transporter in the disposal of endo-and xenobiotics. Pharmacol Ther. 1994;64:77–97. doi: 10.1016/0163-7258(94)90034-5. [DOI] [PubMed] [Google Scholar]
  35. Oude Elferink RPJ, Tytgat GN, Groen AK. The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J. 1997;11:19–28. doi: 10.1096/fasebj.11.1.9034162. [DOI] [PubMed] [Google Scholar]
  36. Parkinson A. Biotransformation of xenobiotics. In: Klaassen CD, Amdur MO, Doull J, editors. Casarett and Doull's Toxicology: The Basic Science of Poisons. New York: McGraw-Hill; 1996. pp. 113–186. [Google Scholar]
  37. Paulusma CC, Oude Elferink RPJ. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man. J Mol Med. 1997;75:420–428. doi: 10.1007/s001090050127. [DOI] [PubMed] [Google Scholar]
  38. Paulusma CC, Bosma PJ, Zaman GJR, Bakker CTM, Otter M, Scheffer GL, Scheper RJ, Borst P, Oude Elferink RP. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science. 1996;271:1126–1128. doi: 10.1126/science.271.5252.1126. [DOI] [PubMed] [Google Scholar]
  39. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology. 1997;25:1539–1542. doi: 10.1002/hep.510250635. [DOI] [PubMed] [Google Scholar]
  40. Paulusma CC, van Geer MA, Evers R, Heijn M, Ottehoff R, Borst P, Oude Elferink RP. Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates lowaffinity transport of reduced glutathione. Biochem J. 1999;338:393–401. [PMC free article] [PubMed] [Google Scholar]
  41. Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bclx( L) Blood. 2000;95:1014–1022. [PubMed] [Google Scholar]
  42. Schinkel AH, Smith JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanns-Maandag EC, te Riele HP, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77:491–502. doi: 10.1016/0092-8674(94)90212-7. [DOI] [PubMed] [Google Scholar]
  43. Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smith JJM, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA. 1997;94:4028–4033. doi: 10.1073/pnas.94.8.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sekine T, Cha SH, Tsuda M, Apiwattanakul N, Nakajima N, Kanai Y, Endau H. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 1998;429:179–182. doi: 10.1016/s0014-5793(98)00585-7. [DOI] [PubMed] [Google Scholar]
  45. Simonson GD, Vincent AC, Roberg KJ, Huang Y, Iwanij V. Molecular cloning and characterization of a novel liver-specific transport protein. J Cell Sci. 1994;107:1065–1072. doi: 10.1242/jcs.107.4.1065. [DOI] [PubMed] [Google Scholar]
  46. Smith JJ, Schinkel AH, Oude Elferink RPJ, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt MM, van Roon MA, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993;75:451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  47. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlos J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233–238. doi: 10.1038/3034. [DOI] [PubMed] [Google Scholar]
  48. Taniguchi K, Wada M, Kohno K, Nakamura T, Kawabe T, Kawakami M, Kagotani K, Okumura K, Akiyama S, Kuwano M. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res. 1996;56:4124–4129. [PubMed] [Google Scholar]
  49. Thiebaut F, Tsuruo T, Hamada H. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA. 1987;84:7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med. 1998;339:1217–1227. doi: 10.1056/NEJM199810223391707. [DOI] [PubMed] [Google Scholar]
  51. Uchiumi T, Hinoshita E, Haga S, Nakamura T, Tanaka T, Toh S, Furukawa M, Kawabe T, Wada M, Kagotani K, Okumura K, Kohno K, Akiyama S, Kuwano M. Isolation of a novel human canalicular multispecific organic anion transporter, cMOAT2/MRP3, and its expression in cisplatin-resistant cancer cells with decreased ATP-dependent drug transport. Biochem Biophys Res Commun. 1998;252:103–110. doi: 10.1006/bbrc.1998.9546. [DOI] [PubMed] [Google Scholar]
  52. Váradi A, Tusnády GE, Bakos E, Sarkadi B. Membrane topology of the human multidrug resistance-associated protein and its homologs. Cytotechnology. 1998;27:71–79. doi: 10.1023/A:1008031914247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wada M, Toh S, Taniguchi K. Mutations in the canalicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubineamia II/Dubin-Johnson syndrome. Hum Mol Genet. 1998;7:203–207. doi: 10.1093/hmg/7.2.203. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES