Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2001 Jul;36(1-3):49–53. doi: 10.1023/A:1014041003617

Adhesion, growth and detachment of cells on modified polystyrene surface

V Hendrick 1, E Muniz 2, G Geuskens 2, J Wérenne 4,
PMCID: PMC3449656  PMID: 19003314

Abstract

By adsorbing poly(N-isopropylacrylamide) (PNIPAAm) from an aqueous solution onto oxidised polystyrene without the need for grafting the polymer to the surface, we showed here that cells(CHO-K1) adhere and grow well at 37 °C and are detached by lowering the temperature to 10 °C without any other deleterious treatment. Both bacterial culture grade polystyrene Petri dishes and polystyrene beads (120 to 250μm diameters) commercially available used in static conditions of growth were tested with similar results. The contact angle of modified Petri dishes with a water droplet increases from 36 to 58° when the temperature is raised from 25 to 37 °C indicating change in hydrophilicity of the surface as a function of temperature.

Keywords: adsorption of poly(N-isopropylarcrylamide), cell adhesion, surface modification of polystyrene, temperaturedependent detachment

Full Text

The Full Text of this article is available as a PDF (69.7 KB).

References

  1. Chiantore O, Guaita M, Trossarelli L. Solution properties of poly(N-isopropylacrylamide) Macromol Chem. 1979;190:969–973. doi: 10.1002/macp.1979.021800413. [DOI] [Google Scholar]
  2. Fujishige S, Kubota K, Ando I. Phase transition of aqueous solution of poly(N-isopropylacrylamide) and poly(Nisopropylmethacrylamide) J Phys. 1989;92:3311–3312. [Google Scholar]
  3. Geuskens G, Thiriaux P. Surface modification of polymers II. Photo-oxidation of SBS containing anthracene and grafting initiated by photo-generated hydroperoxides. Eur Polym J. 1993;29:351–353. doi: 10.1016/0014-3057(93)90104-N. [DOI] [Google Scholar]
  4. Geuskens G, Etoc A, Di Michelle P. Surface modification of polymers - VII. Photochemical grafting of acrylamide and N-isopropylacrylamide onto phlyethylene initiated by anthraquinon-2-sulfonate adsorbed at the surface of the polymer. Eur Polym J. 2000;36:265–271. doi: 10.1016/S0014-3057(99)00192-5. [DOI] [Google Scholar]
  5. Muniz EC, Geuskens G. Influence of temperature on the permeability of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide) J Membrane Sci. 2000;172:287–293. doi: 10.1016/S0376-7388(00)00346-X. [DOI] [Google Scholar]
  6. Grierson I, Hiscott P, Hogg P, Robey H, Mazure A, Lakin G. Development, repair and regeneration of the retinal-pigment epithelium. Eys. 1994;8:255–262. doi: 10.1038/eye.1994.54. [DOI] [PubMed] [Google Scholar]
  7. Idage SB, Bandrinarayanan S. Surface modification of polystyrene using nitrogen-plasma. An X-ray photoelectron spectroscopy study. Langmuir. 1998;14:2780–2785. doi: 10.1021/la9711286. [DOI] [Google Scholar]
  8. Kubota H, Shiobara N. Photografting of poly(Nisopopylacrylamide) on cellulose and temperature-response character of the resulting grafte cellulose. Reactive and Functional Polymers. 1998;37:218–224. doi: 10.1016/S1381-5148(97)00144-2. [DOI] [Google Scholar]
  9. Kubota H, Ujita S. Reactivity of glycidyl methacrylate grafted cellulose prepared by means of photografting. J Appl Polym Sci. 1995;56:25–31. doi: 10.1002/app.1995.070560104. [DOI] [Google Scholar]
  10. Liang L, Feng XD, Liu J, Rieke PC, Fryxell GE. Reversible surface properties of glass plate and capillary tube grafted by photopolymerization of N-isopropylacrylamide. Macromolecules. 1998;31:7845–7850. doi: 10.1021/ma9802881. [DOI] [Google Scholar]
  11. Makino K, Umersu M, Goto Y, Nakayama A, Suhara T, Tsujii J, Kikuchi A, Ohshima H, Sakurai Y, Okano T. Interaction between harged soft microcapsules and red blood cells: effects of PEGylation of microcapsule membranes upon their surface properties. Colloids and Surfaces B. 1999;13:287–297. doi: 10.1016/S0927-7765(99)00041-7. [DOI] [Google Scholar]
  12. Okahata Y, Noguchi H, Seki T. Functional capsule membranes.23. thermoselective permeation from a polymer-grafted capsule membrane. Macromolecules. 1986;19:493–494. doi: 10.1021/ma00156a049. [DOI] [Google Scholar]
  13. Ong Y-L, Razatos A, Georgiu G, Sharma MM. Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir. 1999;15:2719–2725. doi: 10.1021/la981104e. [DOI] [Google Scholar]
  14. Onyiriuka EC. The effects of high-energy radiation on the surface chemistry of polystyrene: a mechanistic study. J Appl Polym Sci. 1993;47:2187–2194. doi: 10.1002/app.1993.070471213. [DOI] [Google Scholar]
  15. Seto F, Fukuyama K, Muraoka Y, Kishida A, Askashi M. Thermosensitive surfac properties of polyethylene film with poly(N-isopropylacrylamide) chains prepared by corona discharge induced grafting. J Appl Polym Sci. 1998;68:1773–779. doi: 10.1002/(SICI)1097-4628(19980613)68:11<1773::AID-APP8>3.0.CO;2-G. [DOI] [Google Scholar]
  16. von Recum H, Kikuchi A, Okuhara M, Sakurai Y, Okano T, Kim SW. Retinal pigmented epithelium cultures on thermally responsive polymer porous substrates. J Biomater Sci Polymer Edn. 1998;9:1241–1253. doi: 10.1163/156856298x00758. [DOI] [PubMed] [Google Scholar]
  17. Yakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T. Graft architectural effects on thermo-responsive wettability changes of pol(N-isopropylacrylamide)-modified surfaces. Langmuir. 1998;14:4657–4664. doi: 10.1021/la980090+. [DOI] [Google Scholar]
  18. Zhao Q, Zhai G-J, Ng DHL, Zang Z-Z, Chen Z-Q. Surface modification of Al2O3 bioceramic by NH2+ ion implantation. Biomaterials. 1999;20:595–599. doi: 10.1016/S0142-9612(98)00218-X. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES