Abstract
The use of bioinformatics to integrate phenotypic and genomic data from mammalian models is well established as a means of understanding human biology and disease. Beyond direct biomedical applications of these approaches in predicting structure–function relationships between coding sequences and protein activities, comparative studies also promote understanding of molecular evolution and the relationship between genomic sequence and morphological and physiological specialization. Recently recognized is the potential of comparative studies to identify functionally significant regulatory regions and to generate experimentally testable hypotheses that contribute to understanding mechanisms that regulate gene expression, including transcriptional activity, alternative splicing and transcript stability. Functional tests of hypotheses generated by computational approaches require experimentally tractable in vitro systems, including cell cultures. Comparative sequence analysis strategies that use genomic sequences from a variety of evolutionarily diverse organisms are critical for identifying conserved regulatory motifs in the 5′-upstream, 3′-downstream and introns of genes. Genomic sequences and gene orthologues in the first aquatic vertebrate and protovertebrate organisms to be fully sequenced (Fugu rubripes, Ciona intestinalis, Tetraodon nigroviridis, Danio rerio) as well as in the elasmobranchs, spiny dogfish shark (Squalus acanthias) and little skate (Raja erinacea), and marine invertebrate models such as the sea urchin (Strongylocentrotus purpuratus) are valuable in the prediction of putative genomic regulatory regions. Cell cultures have been derived for these and other model species. Data and tools resulting from these kinds of studies will contribute to understanding transcriptional regulation of biomedically important genes and provide new avenues for medical therapeutics and disease prevention.
Full Text
The Full Text of this article is available as a PDF (573.9 KB).
References
- Adelman M.K., Schluter S.F., Marchalonis J.J. The natural antibody repertoire of sharks and humans recognizes the potential universe of antigens. Protein J. 2004;23(2):103–118. doi: 10.1023/B:JOPC.0000020077.73751.76. [DOI] [PubMed] [Google Scholar]
- Ahituv N., Rubin E.M. and Nobrega M.A. 2004. Exploiting human–fish genome comparisons for deciphering gene regulation. Hum. Mol. Genet. 13 Spec No 2:R261–266. [DOI] [PubMed]
- Aller S.G., Lombardo I.D., Bhanot S., Forrest J.N., Jr. Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland. Am. J. Physiol. 1999;276:C442–C449. doi: 10.1152/ajpcell.1999.276.2.C442. [DOI] [PubMed] [Google Scholar]
- Aparicio S., Chapman J., Stupka E., Putnam N., Chia J.M., Dehal P., Christoffels A., Rash S., Hoon S., Smit A., Gelpke M.D., Roach J., Oh T., Ho I.Y., Wong M., Detter C., Verhoef F., Predki P., Tay A., Lucas S., Richardson P., Smith S.F., Clark M.S., Edwards Y.J., Doggett N., Zharkikh A., Tavtigian S.V., Pruss D., Barnstead M., Evans C., Baden H., Powell J., Glusman G., Rowen L., Hood L., Tan Y.H., Elgar G., Hawkins T., Venkatesh B., Rokhsar D., Brenner S. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002;297:1301–1310. doi: 10.1126/science.1072104. [DOI] [PubMed] [Google Scholar]
- Aparicio S., Morrison A., Gould A., Gilthorpe J., Chaudhuri C., Rigby P., Krumlauf R., Brenner S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fishFugu rubripes. Proc. Natl. Acad. Sci. USA. 1995;92:1684–1688. doi: 10.1073/pnas.92.5.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballatori N., Boyer J.L. and Rockett J.C. 2003. Exploiting genome data to understand the function, regulation, and evolutionary origins of toxicologically relevant genes. Environ. Health Perspect. Toxicogenom. 111: doi:10.1289/txg.5961. [PubMed]
- Barnes D. and Sato G.H. 2000. In Lazarrini P. (ed.), Cell Culture Systems in Tissue Engineering, pp. 111–118.
- Barnes D. and Collodi P. 2005. In: Evans D. and Claiborne J.B. (eds) Fish Cell Lines and Stem Cells in the Physiology of Fishes, 3rd edn. CRC Press, in press.
- Bayne C.J. 1998. In: Barnes D.W. and Mather J.P. (eds), Invertebrate Cell Culture Considerations: Insects, Ticks, Shellfish, and Worms. Methods in Cell Biology, Vol. 57. Academic Press, Chapter 10, pp. 187–201. [DOI] [PubMed]
- Bayne C.J., Gerwick L., Fujiki K., Nakao M., Yano T. Immune-relevant (including acute phase) genes identified in the livers of rainbow troutOncorhynchus mykissby means of suppression subtractive hybridization. Dev. Comp. Immunol. 2001;25:205–217. doi: 10.1016/S0145-305X(00)00057-4. [DOI] [PubMed] [Google Scholar]
- Boguski M.S., Lowe T.M., Tolstoshev C.M. dbEST – database for “expressed sequence tags”. Nat. Genet. 1993;4:332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
- Bray N., Dubchak I., Pachter L. AVID: a global alignment program. Genome Res. 2003;13:97–102. doi: 10.1101/gr.789803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burge C., Karlin S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997;268:78–94. doi: 10.1006/jmbi.1997.0951. [DOI] [PubMed] [Google Scholar]
- Cai S.Y., Soroka C.J., Ballatori N., Boyer J.L. Molecular characterization of a multidrug resistance-associated protein, Mrp2, from the little skate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;284:R125–R130. doi: 10.1152/ajpregu.00392.2002. [DOI] [PubMed] [Google Scholar]
- Cai S.Y., Wang L., Ballatori N., Boyer J.L. Bile salt export pump is highly conserved during vertebrate evolution and its expression is inhibited by PFIC type II mutations. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281:G316–G322. doi: 10.1152/ajpgi.2001.281.2.G316. [DOI] [PubMed] [Google Scholar]
- Chiu C.H., Amemiya C., Dewar K., Kim C.B., Ruddle F.H., Wagner G.P. Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc. Natl. Acad. Sci. USA. 2002;99:5492–5497. doi: 10.1073/pnas.052709899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., De Tomaso A., Davidson B., Di Gregorio A., Gelpke M., Goodstein D.M., Harafuji N., Hastings K.E., Ho I., Hotta K., Huang W., Kawashima T., Lemaire P., Martinez D., Meinertzhagen I.A., Necula S., Nonaka M., Putnam N., Rash S., Saiga H., Satake M., Terry A., Yamada L., Wang H.G., Awazu S., Azumi K., Boore J., Branno M., Chin-Bow S., DeSantis R., Doyle S., Francino P., Keys D.N., Haga S., Hayashi H., Hino K., Imai K.S., Inaba K., Kano S., Kobayashi K., Kobayashi M., Lee B.I., Makabe K.W., Manohar C., Matassi G., Medina M., Mochizuki Y., Mount S., Morishita T., Miura S., Nakayama A., Nishizaka S., Nomoto H., Ohta F., Oishi K., Rigoutsos I., Sano M., Sasaki A., Sasakura Y., Shoguchi E., Shin-i T., Spagnuolo A., Stainier D., Suzuki M.M., Tassy O., Takatori N., Tokuoka M., Yagi K., Yoshizaki F., Wada S., Zhang C., Hyatt P.D., Larimer F., Detter C., Doggett N., Glavina T., Hawkins T., Richardson P., Lucas S., Kohara Y., Levine M., Satoh N., Rokhsar D.S. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002;298:2157–2167. doi: 10.1126/science.1080049. [DOI] [PubMed] [Google Scholar]
- Devor D.C., Forrest J.N., Jr., Suggs W.K., Frizzell R.A. cAMP-activated Cl-channels in primary cultures of spiny dogfish (Squalus acanthias) rectal gland. Am. J. Physiol. 1995;268:C70–C79. doi: 10.1152/ajpcell.1995.268.1.C70. [DOI] [PubMed] [Google Scholar]
- Dooley K., Zon L.I. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 2000;10:252–256. doi: 10.1016/S0959-437X(00)00074-5. [DOI] [PubMed] [Google Scholar]
- Dubchak I., Brudno M., Loots G.G., Pachter L., Mayor C., Rubin E.M., Frazer K.A. Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res. 2000;10:1304–1306. doi: 10.1101/gr.142200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forrest J.N., Jr. Cellular and molecular biology of chloride secretion in the shark rectal gland: regulation by adenosine receptors. Kidney Int. 1996;49:1557–1562. doi: 10.1038/ki.1996.224. [DOI] [PubMed] [Google Scholar]
- Frazer K.A., Elnitski L., Church D.M., Dubchak I., Hardison R.C. Cross-species sequence comparisons: a review of methods and available resources. Genome Res. 2003;13:1–12. doi: 10.1101/gr.222003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazer K.A., Pachter L., Poliakov A., Rubin E.M., Dubchak I. VISTA: computational tools for comparative genomics. Nucl. Acids Res. 2004;32:W273–W279. doi: 10.1093/nar/gkh458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiki K., Bayne C.J., Shin D.H., Nakao M., Yano T. Molecular cloning of carp (Cyprinus carpio) C-type lectin and pentraxin by use of suppression subtractive hybridisation. Fish Shellfish Immunol. 2001;11:275–279. doi: 10.1006/fsim.2000.0331. [DOI] [PubMed] [Google Scholar]
- Fujiki K., Gerwick L., Bayne C.J., Mitchell L., Gauley J., Bols N., Dixon B. Molecular cloning and characterization of rainbow trout (Oncorhynchus mykiss) CCAAT/enhancer binding protein beta. Immunogenetics. 2003;55:53–261. doi: 10.1007/s00251-003-0576-7. [DOI] [PubMed] [Google Scholar]
- Gamba G., Saltzberg S.N., Lombardi M., Miyanoshita A., Lytton J., Hediger M.A., Brenner B.M., Hebert S.C. Primary structure and functional expression of a cDNA encoding the thiazide-sensitiveelectroneutral sodium-chloride cotransporter. Proc. Natl. Acad. Sci. USA. 1993;90:2749–2753. doi: 10.1073/pnas.90.7.2749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greger R., Bleich M., Warth R., Thiele I., Forrest J.N. The cellular mechanisms of Cl-secretion induced by C-type natriuretic peptide (CNP). Experiments on isolated in vitro perfused rectal gland tu-bules of Squalus acanthias. Pflugers Arch. 1999;438:15–22. doi: 10.1007/s004240050874. [DOI] [PubMed] [Google Scholar]
- Henson J.H., Roesener C.D., Gaetano C.J., Mendola R.J., Forrest J.N., Jr., Holy J., Kleinzeller A. Confocal microscopic observation of cytoskeletal reor-ganizations in cultured shark rectal gland cells following treatment with hypotonic shock and high external K+ J. Exp. Zool. 1997;279:415–424. doi: 10.1002/(SICI)1097-010X(19971201)279:5<415::AID-JEZ3>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Hinds K.R ., Litman G.W. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature. 1986;320:546–549. doi: 10.1038/320546a0. [DOI] [PubMed] [Google Scholar]
- Hughes J.D., Estep P.W., Tavazoie S., Church G.M. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 2000;296:1205–1214. doi: 10.1006/jmbi.2000.3519. [DOI] [PubMed] [Google Scholar]
- Ishikawa J., Imai E., Moritomo T., Nakao M., Yano T., Tomana M. Characterisation of a fourth immunoglobulin light chain isotype in the common carp. Fish Shellfish Immunol. 2004;16:369–379. doi: 10.1016/j.fsi.2003.06.002. [DOI] [PubMed] [Google Scholar]
- Karolchik D., Baertsch R., Diekhans M., Furey T.S., Hinrichs A., Lu Y.T., Roskin K.M., Schwartz M., Sugnet C.W., Thomas D.J., Weber R.J., Haussler D., Kent W.J. The UCSC Genome Browser Database. Nucl. Acids Res. 2003;31:51–54. doi: 10.1093/nar/gkg129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawamura K., Fujiwara S. Establishment of cell lines from multipotent epithelial sheet in the budding tunicatePolyandrocarpa misakiensis. Cell Struct. Funct. 1995;20:97–106. doi: 10.1247/csf.20.97. [DOI] [PubMed] [Google Scholar]
- Ke Q., Yang Y., Ratner M., Zeind J., Jiang C., Forrest J.N., Jr., Xiao Y.F. Intracellular accumulation of mercury enhances P450 CYP1A1 expression and Cl-currents in cultured shark rectal gland cells. Life Sci. 2002;21:2547–2566. doi: 10.1016/S0024-3205(02)01502-3. [DOI] [PubMed] [Google Scholar]
- Korf I., Flicek P., Duan D., Brent M.R. Integrating genomic homology into gene structure prediction. Bioinformatics. 2001;17(Suppl 1):S140–148. doi: 10.1093/bioinformatics/17.suppl_1.s140. [DOI] [PubMed] [Google Scholar]
- Lehrich R.W., Forrest J.N., Jr. Tyrosine phosphorylation is a novel pathway for regulation of chloride secretion in shark rectal gland. Am. J. Physiol. 1995;269:F594–F600. doi: 10.1152/ajprenal.1995.269.4.F594. [DOI] [PubMed] [Google Scholar]
- Lehrich R.W., Aller S.G., Webster P., Marino C.R., Forrest J.N., Jr. Vasoactive intestinal peptideforskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfishSqualus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. J. Clin. Invest. 1998;101:737–745. doi: 10.1172/JCI803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loots G.G., Locksley R.M., Blankespoor C.M., Wang Z.E., Miller W., Rubin E.M., Frazer K.A. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science. 2000;288:136–140. doi: 10.1126/science.288.5463.136. [DOI] [PubMed] [Google Scholar]
- Loots G.G., Ovcharenko I. rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucl. Acids Res. 2004;32:W217–W221. doi: 10.1093/nar/gkh383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loots G.G., Ovcharenko I., Pachter L., Dubchak I., Rubin E.M. rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res. 2002;12:832–839. doi: 10.1101/gr.225502. Article published online before print in April 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J., Martin K.A., Picciotto M., Hockfield S., Nairn A.C., Kaczmarek L.K. Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 1991;266:22749–22754. [PubMed] [Google Scholar]
- Mather J., Barnes D. Cell Culture Methods, Vol. 57, Methods in Cell Biology. NY: Academic Press Inc.; 1997. [Google Scholar]
- Mattingly C.J., Colby G.T., Forrest J.N., Boyer J.L. The Comparative Toxicogenomics Database (CTD) Environ. Health Perspect. 2003;111:793–795. doi: 10.1289/ehp.6028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattingly C.J., Colby G.T., Rosenstein M.C., Forrest J.N., Jr., Boyer J.L. Promoting comparative molecular studies in environmental health research: an overview of the comparative toxicogenomics database (CTD) Pharmacogenom. J. 2004a;4:5–8. doi: 10.1038/sj.tpj.6500225. [DOI] [PubMed] [Google Scholar]
- Mattingly C., Parton A., Dowell L., Rafferty J., Barnes D. Cell and molecular biology of marine elasmobranchs: Squalus acanthias and Raja erinacea. Zebrafish. 2004b;1:111–120. doi: 10.1089/zeb.2004.1.111. [DOI] [PubMed] [Google Scholar]
- Matys V., Fricke E., Geffers R., Gossling E., Haubrock M., Hehl R., Hornischer K., Karas D., Kel A.E., Kel-Margoulis O.V., Kloos D.U., Land S., Lewicki-Potapov B., Michael H., Munch R., Reuter I., Rotert S., Saxel H., Scheer M., Thiele S., Wingender E. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucl. Acids Res. 2003;31:374–378. doi: 10.1093/nar/gkg108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naruse K., Tanaka M., Mita K., Shima A., Postlethwait J., Mitani H. A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res. 2004;14:820–828. doi: 10.1101/gr.2004004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ovcharenko I., Loots G.G., Giardine B.M., Hou M., Ma J., Hardison R.C., Stubbs L., Miller W. Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. 2005;15:184–194. doi: 10.1101/gr.3007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ovcharenko I., Loots G.G., Hardison R.C., Miller W., Stubbs L. zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res. 2004;14:472–477. doi: 10.1101/gr.2129504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennacchio L.A., Rubin E.M. Comparative genomic tools and databases: providing in-sights into the human genome. J. Clin. Invest. 2003;111:1099–1106. doi: 10.1172/JCI200317842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard D.A., Bergman C.M., Stoye J., Celniker S.E., Eisen M.B. Benchmarking tools for the alignment of functional non-coding DNA. BMC Bioinform. 2004;5:6. doi: 10.1186/1471-2105-5-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinkevich B. Cell cultures from marine invertebrates: obstacles, new approaches and recent developments. J. Biotechnol. 1999;70:133–153. doi: 10.1016/S0168-1656(99)00067-X. [DOI] [Google Scholar]
- Rogic S., Ouellette B.F., Mackworth A.K. Improving gene recognition accuracy by combining predictions from two gene-finding programs. Bioinformatics. 2002;18:1034–1045. doi: 10.1093/bioinformatics/18.8.1034. [DOI] [PubMed] [Google Scholar]
- Rowntree R.K., Vassaux G., McDowell T.L., Howe S., McGuigan A., Phylactides M., Huxley C., Harris A. An element in intron 1 of the CFTR gene augments intestinal expression in vivo. Hum. Mol. Genet. 2001;10:1455–1464. doi: 10.1093/hmg/10.14.1455. [DOI] [PubMed] [Google Scholar]
- Santini S., Boore J.L., Meyer A. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res. 2003;13:1111–1122. doi: 10.1101/gr.700503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz S., Elnitski L., Li M., Weirauch M., Riemer C., Smit A., Green E.D., Hardison R.C., Miller W. MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucl. Acids Res. 2003;31:3518–3524. doi: 10.1093/nar/gkg579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz S., Zhang Z., Frazer K.A., Smit A., Riemer C., Bouck J., Gibbs R., Hardison R., Miller W. PipMaker – a web server for aligning two genomic DNA sequences. Genome Res. 2000;10:577–586. doi: 10.1101/gr.10.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva P., Solomon R.J., Epstein F.H. Mode of activation of salt secretion by C-type natriuretic peptide in the shark rectal gland. Am. J. Physiol. 1999;277:R1725–R1732. doi: 10.1152/ajpregu.1999.277.6.R1725. [DOI] [PubMed] [Google Scholar]
- Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zhang Z., Toiber D., Thanaraj T.A., Soreq H. Function of alternative splicing. Gene. 2005;344:1–20. doi: 10.1016/j.gene.2004.10.022. [DOI] [PubMed] [Google Scholar]
- Thomas J.W., Prasad A.B., Summers T.J., Lee-Lin S.Q., Maduro V.V., Idol J.R., Ryan J.F., Thomas P.J., McDowell J.C., Green E.D. Parallel construction of orthologous sequence-ready clone contig maps in multiple species. Genome Res. 2002;12:1277–1285. doi: 10.1101/gr.283202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J.W., Touchman J.W. Vertebrate genome sequencing: building a backbone for comparative genomics. Trends Genet. 2002;18:104–108. doi: 10.1016/S0168-9525(02)02599-4. [DOI] [PubMed] [Google Scholar]
- Thomas J.W., Touchman J.W., Blakesley R.W., Bouffard G.G., Beckstrom-Sternberg S.M., Margulies E.H., Blanchette M., Siepel A.C., Thomas P.J., McDowell J.C., Maskeri B., Hansen N.F., Schwartz M.S., Weber R.J., Kent W.J., Karolchik D., Bruen T.C., Bevan R., Cutler D.J., Schwartz S., Elnitski L., Idol J.R., Prasad A.B., Lee-Lin S.Q., Maduro V.V., Summers T.J., Portnoy M.E., Dietrich N.L., Akhter N., Ayele K., Benjamin B., Cariaga K., Brinkley C.P., Brooks S.Y., Granite S., Guan X., Gupta J., Haghighi P., Ho S.L., Huang M.C., Karlins E., Laric P.L., Legaspi R., Lim M.J., Maduro Q.L., Masiello C.A., Mastrian S.D., McCloskey J.C., Pearson R., Stantripop S., Tiongson E.E., Tran J.T., Tsurgeon C., Vogt J.L., Walker M.A., Wetherby K.D., Wiggins L.S., Young A.C., Zhang L.H., Osoegawa K., Zhu B., Zhao B., Shu C.L., Jong P.J., Lawrence C.E., Smit A.F., Chakravarti A., Haussler D., Green P., Miller W., Green E.D. Comparative analyses of multi-species sequences from targeted genomic regions. Nature. 2003;424:788–793. doi: 10.1038/nature01858. [DOI] [PubMed] [Google Scholar]
- Tomana M., Ishikawa J., Imai E., Moritomo T., Nakao M., Yano T. Characterization of immunoglobulin light chain isotypes in the common carp. Immunogenetics. 2002;88:120–129. doi: 10.1007/s00251-002-0447-7. [DOI] [PubMed] [Google Scholar]
- Uberbacher E.C., Mural R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA. 1991;88:11261–11265. doi: 10.1073/pnas.88.24.11261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valentich J.D., Forrest J.N., Jr. Cl-secretion by cultured shark rectal gland cells. I. Transepithelial transport. Am. J. Physiol. 1991;260:C813–C823. doi: 10.1152/ajpcell.1991.260.4.C813. [DOI] [PubMed] [Google Scholar]
- Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R., Zhang Q., Kodira C.D., Zheng X.H., Chen L., Skupski M., Subramanian G., Thomas P.D., Zhang J., Gabor Miklos G.L., Nelson C., Broder S., Clark A.G., Nadeau J., McKusick V.A., Zinder N., Levine A.J., Roberts R.J., Simon M., Slayman C., Hunkapiller M., Bolanos R., Delcher A., Dew I., Fasulo D., Flanigan M., Florea L., Halpern A., Hannenhalli S., Kravitz S., Levy S., Mobarry C., Reinert K., Remington K., Abu-Threideh J., Beasley E., Biddick K., Bonazzi V., Brandon R., Cargill M., Chandramouliswaran I., Charlab R., Chaturvedi K., Deng Z., Di Francesco V., Dunn P., Eilbeck K., Evangelista C., Gabrielian A.E., Gan W., Ge W., Gong F., Gu Z., Guan P., Heiman T.J., Higgins M.E., Ji R.R., Ke Z., Ketchum K.A., Lai Z., Lei Y., Li Z., Li J., Liang Y., Lin X., Lu F., Merkulov G.V., Milshina N., Moore H.M., Naik A.K., Narayan V.A., Neelam B., Nusskern D., Rusch D.B., Salzberg S., Shao W., Shue B., Sun J., Wang Z., Wang A., Wang X., Wang J., Wei M., Wides R., Xiao C., Yan C., Yao A., Ye J., Zhan M., Zhang W., Zhang H., Zhao Q., Zheng L., Zhong F., Zhong W., Zhu S., Zhao S., Gilbert D., Baumhueter S., Spier G., Carter C., Cravchik A., Woodage T., Ali F., An H., Awe A., Baldwin D., Baden H., Barnstead M., Barrow I., Beeson K., Busam D., Carver A., Center A., Cheng M.L., Curry L., Danaher S., Davenport L., Desilets R., Dietz S., Dodson K., Doup L., Ferriera S., Garg N., Gluecksmann A., Hart B., Haynes J., Haynes C., Heiner C., Hladun S., Hostin D., Houck J., Howland T., Ibegwam C., Johnson J., Kalush F., Kline L., Koduru S., Love A., Mann F., May D., McCawley S., McIntosh T., McMullen I., Moy M., Moy L., Murphy B., Nelson K., Pfannkoch C., Pratts E., Puri V., Qureshi H., Reardon M., Rodriguez R., Rogers Y.H., Romblad D., Ruhfel B., Scott R., Sitter C., Smallwood M., Stewart E., Strong R., Suh E., Thomas R., Tint N.N., Tse S., Vech C., Wang G., Wetter J., Williams S., Williams M., Windsor S., Winn-Deen E., Wolfe K., Zaveri J., Zaveri K., Abril J.F., Guigo R., Campbell M.J., Sjolander K.V., Karlak B., Kejariwal A., Mi H., Lazareva B., Hatton T., Narechania A., Diemer K., Muruganujan A., Guo N., Sato S., Bafna V., Istrail S., Lippert R., Schwartz R., Walenz B., Yooseph S., Allen D., Basu A., Baxendale J., Blick L., Caminha M., Carnes-Stine J., Caulk P., Chiang Y.H., Coyne M., Dahlke C., Mays A., Dombroski M., Donnelly M., Ely D., Esparham S., Fosler C., Gire H., Glanowski S., Glasser K., Glodek A., Gorokhov M., Graham K., Gropman B., Harris M., Heil J., Henderson S., Hoover J., Jennings D., Jordan C., Jordan J., Kasha J., Kagan L., Kraft C., Levitsky A., Lewis M., Liu X., Lopez J., Ma D., Majoros W., McDaniel J., Murphy S., Newman M., Nguyen T., Nguyen N., Nodell M., Pan S., Peck J., Peterson M., Rowe W., Sanders R., Scott J., Simpson M., Smith T., Sprague A., Stockwell T., Turner R., Venter E., Wang M., Wen M., Wu D., Wu M., Xia A., Zandieh A., Zhu X. The sequence of the human genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
- Wagner A. Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes. Bioinformatics. 1999;15:776–784. doi: 10.1093/bioinformatics/15.10.776. [DOI] [PubMed] [Google Scholar]
- Waldegger S., Fakler B., Bleich M., Barth P., Hopf A., Schulte U., Busch A.E., Aller S.G., Forrest J.N., Jr., Greger R., Lang F. Molecular and functional characterization of s-KCNQ1 potassium channel from rectal gland of Squalus acanthias. Pflugers Arch. 1999;437:298–304. doi: 10.1007/s004240050783. [DOI] [PubMed] [Google Scholar]
- Walter R.B., Rains J.D., Russell J.E., Guerra T.M., Daniels C., Johnston D.A., Kumar J., Wheeler A., Kelnar K., Khanolkar V.A., Williams E.L., Hornecker J.L., Hollek L., Mamerow M.M., Pedroza A., Kazianis S. A microsatellite genetic linkage map for Xiphophorus. Genetics. 2004;168:363–372. doi: 10.1534/genetics.103.019349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L., Soroka C.J., Boyer J.L. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J. Clin. Invest. 2002;110:965–972. doi: 10.1172/JCI15968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheelan S.J., Church D.M., Ostell J.M. Spidey: a tool for mRNA-to-genomic alignments. Genome Res. 2001;11:1952–1957. doi: 10.1101/gr.195301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J.C., Lytle C., Zhu T.T., Payne J.A., Benz E., Jr., Forbush B., 3rd Molecular cloning and functional expression of the bumetanide-sensitive Na–K–Cl cotransporter. Proc. Natl. Acad. Sci. USA. 1994;91:2201–2205. doi: 10.1073/pnas.91.6.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang T., Forrest S.J., Stine N., Endo Y., Pasumarthy A., Castrop H., Aller S., Forrest J.N., Jr., Schnermann J., Briggs J. Cyclooxygenase cloning in dogfish shark, Squalus acanthiasits role in rectal gland Cl secretion. Am. J. Physiol. Regulat. Integr. Comp. Physiol. 2002;283:R631–R637. doi: 10.1152/ajpregu.00743.2001. [DOI] [PubMed] [Google Scholar]
- Zhang M.Q. Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc. Natl. Acad. Sci. USA. 1997;94:565–568. doi: 10.1073/pnas.94.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
