Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Sep;49(1):11–23. doi: 10.1007/s10616-005-5361-z

Evaluation of a Serum-free Medium for the Production of rAAV-2 using HeLa Derived Producer Cells

C Jenny 1,, E Toublanc 2, O Danos 1, O -W Merten 1
PMCID: PMC3449747  PMID: 19003059

Abstract

During the last decade, recombinant AAVs have become of increasing interest for gene therapy. Clinical trials have been conducted following promising in vivo evaluations, thus leading laboratories to adapt their production systems for larger and higher quality demands. Classical transfection protocols seem difficult and cumbersome to adapt to a bioreactor scale. The use of stable producer cells appears as an attractive alternative, as this system requires only a single infection step to induce rAAV production. Furthermore, the switch to a serum-free medium is an interesting strategy to increase the biosafety level to satisfy clinical grade requirements for gene therapy products. Here, we have combined both approaches and evaluated different rAAV producer clones in a serum-free medium. We first evaluated the cell growth in a serum-free medium and then did a partial optimisation of the medium composition to obtain vector yields as close as possible to the yields obtained in a classical serum containing medium. Different helper viruses, multiplicity of infection, times of infection and harvest have been compared in small scale cultures in order to determine the optimal settings which were then transferred and evaluated in suspension cultures in spinner flasks. The yields obtained in this system were similar to or at most 2 times lower than those obtained in a serum-containing medium. The scale-up of such a production system as well as the use of high cell density perfusion culture systems will probably lead to considerably higher yields than those obtained in a classical process.

Keywords: Producer cells, rAAV production, Serum free, Suspension culture

Full Text

The Full Text of this article is available as a PDF (331.6 KB).

References

  1. Aitken M.L., Moss R.B., Waltz D.A., Dovey M.E., Tonelli M.R., McNamara S.C., Gibson R.L., Ramsey B.W., Carter B.J., Reynolds T.C. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum. Gene Ther. 2001;12:1907–1916. doi: 10.1089/104303401753153956. [DOI] [PubMed] [Google Scholar]
  2. Blouin V., Brument N., Toublanc E., Raimbaud I., Moullier P., Salvetti A. Improving rAAV production and purification: towards the definition of a scaleable process. J. Gene Med. 2004;6(Suppl 1):S223–S228. doi: 10.1002/jgm.505. [DOI] [PubMed] [Google Scholar]
  3. Brown P., Barrett S., Godwin S., Trudinger M., Marschak T., Norboe D., Mcquiston S. and Kurtzman G. 1998. Optimization of production of adeno-associated virus (AAV) for use in gene therapy. Presented at: Cell Culture Engineering VI. San Diego/CA.
  4. Chadeuf G., Favre D., Tessier J., Provost N., Nony P., Kleinschmidt J., Moullier P., Salvetti A. Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome. J. Gene Med. 2000;2:260–268. doi: 10.1002/1521-2254(200007/08)2:4<260::AID-JGM111>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  5. Clark K.R., Voulgaropoulou F., Fraley D.M., Johnson P.R. Cell lines for the production of recombinant adeno-associated virus. Hum. Gene Ther. 1995;6:1329–1341. doi: 10.1089/hum.1995.6.10-1329. [DOI] [PubMed] [Google Scholar]
  6. Cote J., Bourget L., Garnier A., Kamen A. Study of adenovirus production in serum-free 293SF suspension culture by GFP-expression monitoring. Biotechnol. Prog. 1997;13:709–714. doi: 10.1021/bp970110i. [DOI] [PubMed] [Google Scholar]
  7. Drittanti L., Jenny C., Poulard K., Samba A., Manceau P., Soria N., Vincent N., Danos O., Vega M. Optimised helper virus-free production of high-quality adeno-associated virus vectors. J. Gene Med. 2001;3:59–71. doi: 10.1002/1521-2254(2000)9999:9999<::AID-JGM152>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  8. Durocher Y., Perret S., Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002;30:E9. doi: 10.1093/nar/30.2.e9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farson D., Harding T.C., Tao L., Liu J., Powell S., Vimal V., Yendluri S., Koprivnikar K., Ho K., Twitty C., Husak P., Lin A., Snyder R.O., Donahue B.A. Development and characterization of a cell line for large-scaleserum-free production of recombinant adeno-associated viral vectors. J. Gene Med. 2004;6:1369–1381. doi: 10.1002/jgm.622. [DOI] [PubMed] [Google Scholar]
  10. Gao G.P., Lu F., Sanmiguel J.C., Tran P.T., Abbas Z., Lynd K.S., Marsh J., Spinner N.B., Wilson J.M. Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol. Ther. 2002;5:644–649. doi: 10.1006/mthe.2001.0591. [DOI] [PubMed] [Google Scholar]
  11. Gao G.P., Qu G., Faust L.Z., Engdahl R.K., Xiao W., Hughes J.V., Zoltick P.W., Wilson J.M. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum. Gene Ther. 1998;9:2353–2362. doi: 10.1089/hum.1998.9.16-2353. [DOI] [PubMed] [Google Scholar]
  12. Graham F.L., Prevec L. Manipulation of adenovirus vectors. In: Murray E.J., editor. Gene Transfer and Expression Protocols. Clifton, New Jersey: Humana Press; 1991. pp. 109–128. [DOI] [PubMed] [Google Scholar]
  13. Griffiths B. Scale-up of suspension and anchorage-dependent animal cells. Mol. Biotechnol. 2001;17:225–238. doi: 10.1385/MB:17:3:225. [DOI] [PubMed] [Google Scholar]
  14. Grönvik K.-O., Frieburg H., Malmström U. Centritech Cell – a new separation device for mammalian cells. In: Spier R.E., Griffiths J.B., Stephenne J., Crooy P.J., editors. Advances in Animal Cell Biology and Technology for Bioprocesses. Sevenoaks/U.K: Butterworths; 1989. pp. 428–433. [Google Scholar]
  15. Inoue N., Russell D.W. Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors. J. Virol. 1998;72:7024–7031. doi: 10.1128/jvi.72.9.7024-7031.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kay M.A., Manno C.S., Ragni M.V., Larson P.J., Couto L.B., McClelland A., Glader B., Chew A.J., Tai S.J., Herzog R.W., Arruda V., Johnson F., Scallan C., Skarsgard E., Flake A.W., High K.A. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat. Genet. 2000;24:257–261. doi: 10.1038/71673. [DOI] [PubMed] [Google Scholar]
  17. Leonard C.J., Berns K.I. Adeno-associated virus type 2: a latent life cycle. Prog. Nucleic Acid Res. Mol. Biol. 1994;48:29–52. doi: 10.1016/s0079-6603(08)60852-1. [DOI] [PubMed] [Google Scholar]
  18. Liu X., Voulgaropoulou F., Chen R., Johnson P.R., Clark K.R. Selective Rep-Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol. Ther. 2000;2:394–403. doi: 10.1006/mthe.2000.0132. [DOI] [PubMed] [Google Scholar]
  19. Liu X.L., Clark K.R., Johnson P.R. Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther. 1999;6:293–299. doi: 10.1038/sj.gt.3300807. [DOI] [PubMed] [Google Scholar]
  20. Liu Y.L., Wagner K., Robinson N., Sabatino D., Margaritis P., Xiao W., Herzog R.W. Optimized production of high-titer recombinant adeno-associated virus in roller bottles. Biotechniques. 2003;34:184–189. doi: 10.2144/03341dd07. [DOI] [PubMed] [Google Scholar]
  21. Mathews L.C., Gray J.T., Gallagher M.R., Snyder R.O. Recombinant adeno-associated viral vector production using stable packaging and producer cell lines. Methods Enzymol. 2002;346:393–413. doi: 10.1016/s0076-6879(02)46068-5. [DOI] [PubMed] [Google Scholar]
  22. Matsushita T., Elliger S., Elliger C., Podsakoff G., Villarreal L., Kurtzman G.J., Iwaki Y., Colosi P. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 1998;5:938–945. doi: 10.1038/sj.gt.3300680. [DOI] [PubMed] [Google Scholar]
  23. Meissner P., Girard P., Kulangara A., Tsao M.C., Jordan M., Wurm F.M., et al. Process development for transient gene expression in mammalian cells at the 3 L scale: 10–50 mg of r-protein in days. In: Bernard A., et al., editors. Animal cell technology: Products from Cells, Cells as Products. The Netherlands: Kluwer Academic Publishers; 1999. pp. 351–357. [Google Scholar]
  24. Mizukami H., Okada T., Ogasawara Y., Matsushita T., Urabe M., Kume A., Ozawa K. Separate control of Rep and Cap expression using mutant and wild-type loxP sequences and improved packaging system for adeno-associated virus vector production. Mol. Biotechnol. 2004;27:7–14. doi: 10.1385/MB:27:1:07. [DOI] [PubMed] [Google Scholar]
  25. Neyns B., Vermeij J., Teugels E., Rijcke M., Hermonat P., Greve J. Characterization of permanent cell lines that contain the AAV2 rep-cap genes on an Epstein-Barr-virus-based episomal plasmid. Intervirology. 2001;44:255–263. doi: 10.1159/000050056. [DOI] [PubMed] [Google Scholar]
  26. Ogasawara Y., Mizukami H., Urabe M., Kume A., Kanegae Y., Saito I., Monahan J., Ozawa K. Highly regulated expression of adeno-associated virus large Rep proteins in stable 293 cell lines using the Cre/loxP switching system. J. Gen. Virol. 1999;80:2477–2480. doi: 10.1099/0022-1317-80-9-2477. [DOI] [PubMed] [Google Scholar]
  27. Okada T., Mizukami H., Urabe M., Nomoto T., Matsushita T., Hanazono Y., Kume A., Tobita K., Ozawa K. Development and characterization of an antisense-mediated prepackaging cell line for adeno-associated virus vector production. Biochem. Biophys. Res. Commun. 2001;288:62–68. doi: 10.1006/bbrc.2001.5730. [DOI] [PubMed] [Google Scholar]
  28. Oualikene W., Lamoureux L., Weber J.M., Massie B. Protease-deleted adenovirus vectors and complementing cell lines: potential applications of single-round replication mutants for vaccination and gene therapy. Hum. Gene Ther. 2000;11:1341–1353. doi: 10.1089/10430340050032438. [DOI] [PubMed] [Google Scholar]
  29. Salvetti A., Oreve S., Chadeuf G., Favre D., Cherel Y., Champion-Arnaud P., David-Ameline J., Moullier P. Factors influencing recombinant adeno-associated virus production. Hum. Gene Ther. 1998;9:695–706. doi: 10.1089/hum.1998.9.5-695. [DOI] [PubMed] [Google Scholar]
  30. Schlaeger E.J., Christensen K. Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology. 1999;30:71–83. doi: 10.1023/A:1008000327766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith R.H., Ding C., Kotin R.M. Serum-free production and column purification of adeno-associated virus type 5. J. Virol. Methods. 2003;114:115–124. doi: 10.1016/j.jviromet.2003.09.002. [DOI] [PubMed] [Google Scholar]
  32. Snyder R.O. Adeno-associated virus-mediated gene delivery. J. Gene Med. 1999;1:166–175. doi: 10.1002/(SICI)1521-2254(199905/06)1:3<166::AID-JGM34>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  33. Tessier J., Chadeuf G., Nony P., Avet-Loiseau H., Moullier P., Salvetti A. Characterization of adenovirus-induced inverted terminal repeat-independent amplification of integrated adeno-associated virus rep-cap sequences. J. Virol. 2001;75:375–383. doi: 10.1128/JVI.75.1.375-383.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Toublanc E., Benraiss A., Bonnin D., Blouin V., Brument N., Cartier N., Epstein A.L., Moullier P., Salvetti A. Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2 (rAAV2) particle assembly using stable producer cell lines. J. Gene Med. 2004;6:555–564. doi: 10.1002/jgm.542. [DOI] [PubMed] [Google Scholar]
  35. Trampler F., Sonderhoff S.A., Pui P.W., Kilburn D.G., Piret J.M. Acoustic cell filter for high density perfusion culture of hybridoma cells. Biotechnology. 1994;12:281–284. doi: 10.1038/nbt0394-281. [DOI] [PubMed] [Google Scholar]
  36. Weindler F.W., Heilbronn R. A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J. Virol. 1991;65:2476–2483. doi: 10.1128/jvi.65.5.2476-2483.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wurm F., Bernard A. Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 1999;10:156–159. doi: 10.1016/S0958-1669(99)80027-5. [DOI] [PubMed] [Google Scholar]
  38. Xiao X., Li J., Samulski R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 1998;72:2224–2232. doi: 10.1128/jvi.72.3.2224-2232.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhao N., Liu D.P., Liang C.C. Hot topics in adeno-associated virus as a gene transfer vector. Mol. Biotechnol. 2001;19:229–237. doi: 10.1385/MB:19:3:229. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES