Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 Mar;29(2):93–102. doi: 10.1023/A:1008077603328

Quantitative analysis of transcription and translation in gene amplified Chinese hamster ovary cells on the basis of a kinetic model

Martin Schröder 1, Christof Körner 1, Peter Friedl 1
PMCID: PMC3449912  PMID: 22359058

Abstract

The elevation of expression levels for secreted glycoproteins by gene amplification in mammalian cells shows a saturation behavior at high levels of gene amplification. At high expression levels a drop in the secretion efficiency for the recombinant protein occurs (Schröder and Friedl, 1997), coinciding with the appearance of misfolded protein in the cell. In this communication we investigated whether additional limitations exist at the levels of transcription and translation. Four Chinese hamster ovary (CHO) cell lines expressing different amounts of human antithrombin III (ATIII) were used as a model system. A tenfold increase in the ATIII cDNA copy number from the lowest to the highest producing cell line coincided with a 38-fold increase in ATIII mRNA levels, and an 80-fold increase in the amount of intracellular ATIII levels. The data was analyzed using a simple kinetic model. The following conclusions were derived: I. The transcriptional activity for the recombinant protein is not saturated. II. Translation itself is not saturated either, but may be downregulated as secretion efficiency drops. III. Two explanations for the previously reported drop in secretion efficiency for the recombinant protein with increasing expression level are possible: A. Protein degradation is an alternative fate for translated ATIII and the fraction of ATIII degraded after translation increases as expression level is increased. B. Translation is downregulated as the secretory apparatus becomes exhausted to maintain cell viability.

Keywords: CHO cells, gene expression, kinetic model, protein secretion, transcription, translation

Full Text

The Full Text of this article is available as a PDF (100.1 KB).

References

  1. Aiba S, Tsunekawa H, Imanaka T. New approach to tryptophan production by Escherichia coli: Genetic manipulation of composite plasmids in vitro. Appl Environ Microbiol. 1982;43:289–297. doi: 10.1128/aem.43.2.289-297.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibald AL, McClenaghan M, Hornsey V, Simons P, Clark AJ. High-level expression of biologically active human α1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci USA. 1990;87:5178–5182. doi: 10.1073/pnas.87.13.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey JE, Hjortso M, Lee SB, Srienc F. Kinetics of product formation and plasmid segregation in recombinant microbial populations. Ann NY Acad Sci. 1983;413:71–87. doi: 10.1111/j.1749-6632.1983.tb47879.x. [DOI] [PubMed] [Google Scholar]
  4. Brostrom CO, Prostko CR, Kaufman RJ, Brostrom MA. Inhibition of translational initiation by activators of the glucose-regulated stress protein and heat shock protein stress response systems. Role of the interferon-inducible double-stranded RNA-activated eukaryotic initiation factor 2α kinase. J Biol Chem. 1996;271:24995–25002. doi: 10.1074/jbc.271.40.24995. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. [DOI] [PubMed] [Google Scholar]
  6. Engler-Blum G, Meier M, Frank J, Müller GA. Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993;210:235–244. doi: 10.1006/abio.1993.1189. [DOI] [PubMed] [Google Scholar]
  7. Federspiel NA, Beverley SM, Schilling JW, Schimke RT. Novel DNA rearrangements are associated with dihydrofolate reductase gene amplification. J Biol Chem. 1984;259:9127–9140. [PubMed] [Google Scholar]
  8. Franzén L-E, Svensson S. Structural studies on the carbohydrate portion of human antithrombin III. J Biol Chem. 1980;255:5090–5093. [PubMed] [Google Scholar]
  9. Giulotto E, Saito I, Stark GR. Structure of DNA formed in the first step of CAD gene amplification. EMBO J. 1986;5:2110–2121. doi: 10.1002/j.1460-2075.1986.tb04474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guarna MM, Fann CH, Busby SJ, Walker KM, Kilburn DG, Piret JM. Effect of cDNA copy number on secretion rate of activated protein C. Biotechnol Bioeng. 1995;46:22–27. doi: 10.1002/bit.260460104. [DOI] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Hansson M, Stahl S, Hjorth R, Uhlen M, Moks T. Single-step recovery of a secreted recombinant protein by expanded bed adsorption. Bio/Technology. 1994;12:285–288. doi: 10.1038/nbt0394-285. [DOI] [PubMed] [Google Scholar]
  13. Kane SE. High-level expression of foreign genes in mammalian cells. In: Setlow JK, editor. Genetic Engineering. New York: Plenum Press; 1991. pp. 167–182. [DOI] [PubMed] [Google Scholar]
  14. Kaufman RJ. Amplification and expression of transfected genes in mammalian cells. In: Kellems RE, editor. Gene Amplification in Mammalian Cells. New York: Marcel Dekker; 1993. pp. 315–343. [Google Scholar]
  15. Kaufman RJ, Pittman DD, Marquette KA, Wasley LC, Dorner AJ. Factors limiting biosynthesis and secretion of factor VIII in mammalian cells. In: Alitalo KK, Huhtala M-L, Knowles J, Vaheri A, editors. Recombinant Systems in Protein Expression. Amsterdam: Elsevier Science Publishers; 1990. pp. 63–74. [Google Scholar]
  16. Kellems RE. Gene amplification in mammalian cells: strategies for protein production. Curr Opin Biotechnol. 1991;2:723–729. doi: 10.1016/0958-1669(91)90042-4. [DOI] [PubMed] [Google Scholar]
  17. Kiefhaber T, Rudolph R, Kohler H-H, Buchner J. Protein aggregation in vitro and in vivo: A quantitative model of the kinetic competition between folding and aggregation. Bio/Technology. 1991;9:825–829. doi: 10.1038/nbt0991-825. [DOI] [PubMed] [Google Scholar]
  18. Miller DA, Sayad KU, Kulathila R, Beaudry GA, Merkler DJ, Bertelsen AH. Characterization of a bifunctional peptidyl-glycine α-amidating enzyme expressed in Chinese hamster ovary cells. Arch Biochem Biophys. 1992;298:380–388. doi: 10.1016/0003-9861(92)90425-V. [DOI] [PubMed] [Google Scholar]
  19. Mizuochi T, Fujii J, Kurachi K, Kobata A. Structural studies of the carbohydrate moiety of human antithrombin III. Arch Biochem Biophys. 1980;203:458–465. doi: 10.1016/0003-9861(80)90199-X. [DOI] [PubMed] [Google Scholar]
  20. Murtha-Riel P, Davies MV, Scherer BJ, Choi SY, Hershey JWB, Kaufman RJ. Expression of a phosphorylation-resistant eukaryotic initiation factor 2 α-subunit mitigates heat shock inhibition of protein synthesis. J Biol Chem. 1993;268:12946–12951. [PubMed] [Google Scholar]
  21. Noe DA, Delenick JC. Quantitative analysis of membrane and secretory protein processing and intracellular transport. J Cell Sci. 1989;92:449–459. doi: 10.1242/jcs.92.3.449. [DOI] [PubMed] [Google Scholar]
  22. Nordenman B, Nyström C, Björk I. The size and shape of human and bovine antithrombin III. J Biol Chem. 1977;258:8389–8394. doi: 10.1111/j.1432-1033.1977.tb11730.x. [DOI] [PubMed] [Google Scholar]
  23. Park H, Davies MV, Langland JO, Chang HW, Nam YS, Tartaglia J, Paoletti E, Jacobs BL, Kaufman RJ, Venkatesan S. TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sci USA. 1994;91:4713–4717. doi: 10.1073/pnas.91.11.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pendse GJ, Karkare S, Bailey JE. Effect of cloned gene dosage on cell growth and hepatitis B surface antigen synthesis and secretion in recombinant CHO cells. Biotechnol Bioeng. 1992;40:119–129. doi: 10.1002/bit.260400117. [DOI] [PubMed] [Google Scholar]
  25. Petersen TE, Dudek-Wojciechowska G, Sottrup-Jensen L, Magnusson S. Primary structure of antithrombin-III (heparin cofactor). Partial homology between α1-antitrypsin and antithrombin III. In: Collen D, Wiman B, Verstraete M, editors. The physiological inhibitors of blood coagulation and fibrinolysis. Amsterdam: Elsevier/North Holland Biomedical Press; 1979. pp. 43–54. [Google Scholar]
  26. Prostko CR, Dholakia JN, Brostrom MA, Brostrom CO. Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J Biol Chem. 1995;270:6211–6215. doi: 10.1074/jbc.270.8.4127. [DOI] [PubMed] [Google Scholar]
  27. Ramaiah KVA, Davies M, Chen JJ, Kaufman RJ. Expression of mutant eukaryotic initiation factor 2 α subunit (eIF2α) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2α phosphorylation. Mol Cell Biol. 1994;14:4546–4553. doi: 10.1128/mcb.14.7.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995;59:423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rowling PJE, Freedman RB. Folding, assembly, and posttranslational modification of proteins within the lumen of the endoplasmic reticulum. Subcell Biochem. 1993;21:41–81. doi: 10.1007/978-1-4615-2912-5_3. [DOI] [PubMed] [Google Scholar]
  30. Ryu DDY, Kim J-Y, Lee SB. Bioprocess kinetics and modelling of recombinant fermentation. In: Rehm H-J, Reed G, Pühler A, Stadler P, Schügerl K, editors. Biotechnology, Vol. 4: Measuring, Modelling, and Control. Weinheim: VCH; 1991. pp. 485–505. [Google Scholar]
  31. Sambrook J, Fritsch EF, Maniatis T. A laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989. Molecular cloning. [Google Scholar]
  32. Schröder M, Friedl P. Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation and decreased secretion of the recombinant protein. Biotechnol Bioeng. 1997;53:547–559. doi: 10.1002/(SICI)1097-0290(19970320)53:6<547::AID-BIT2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  33. Seo J-H, Bailey JE. Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol Bioeng. 1985;27:1668–1674. doi: 10.1002/bit.260271207. [DOI] [PubMed] [Google Scholar]
  34. Seo J-H, Bailey JE. Continuous cultivation of recombinant Escherichia coli: Existence of an optimum dilution rate for maximum plasmid and gene product concentration. Biotechnol Bioeng. 1986;28:1590–1594. doi: 10.1002/bit.260281018. [DOI] [PubMed] [Google Scholar]
  35. Sharma RC, Murphy AJM, DeWald MG, Schimke RT. A rapid procedure for isolation of RNA-free genomic DNA from mammalian cells. BioTechniques. 1993;14:176–178. [PubMed] [Google Scholar]
  36. Srivastava SP, Davies MV, Kaufman RJ. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem. 1995;270:16619–16624. doi: 10.1074/jbc.270.28.16619. [DOI] [PubMed] [Google Scholar]
  37. Tsang SS, Yin X, Guzzo-Arkuran C, Jones VS, Davison AJ. Loss of resolution in gel electrophoresis of RNA: A problem associated with the presence of formaldehyde gradients. BioTechniques. 1993;14:380–381. [PubMed] [Google Scholar]
  38. Urlaub G, Chasin LA. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci USA. 1980;77:4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335. [DOI] [PubMed] [Google Scholar]
  40. Wood CR, Dorner AJ, Morris GE, Alderman EM, Wilson D, O'Hara RM, Kaufman RJ. High level synthesis of immunoglobulins in Chinese hamster ovary cells. J Immunol. 1990;145:3011–3016. [PubMed] [Google Scholar]
  41. Yamakawa M, Sugisaki K, Morimoto M, Tanaka M, Yamamoto M, Ichikawa T, Nakashima K. Effects of gene dosage on the expression of human growth hormone cDNA in Escherichia coli. Biochim Biophys Acta. 1989;1009:156–160. doi: 10.1016/0167-4781(89)90095-x. [DOI] [PubMed] [Google Scholar]
  42. Zang M, Trautmann H, Gandor C, Messi F, Asselbergs F, Leist C, Fiechter A, Reiser J. Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium. Bio/Technology. 1995;13:389–392. doi: 10.1038/nbt0495-389. [DOI] [PubMed] [Google Scholar]
  43. Zettlmeissl G, Rudolph R, Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. Biochemistry. 1979;18:5567–5571. doi: 10.1021/bi00592a007. [DOI] [PubMed] [Google Scholar]
  44. Zettlmeissl G, Ragg H, Karges HE. Expression of biologically active human antithrombin III in Chinese hamster ovary cells. Bio/Technology. 1987;5:720–725. doi: 10.1038/nbt0787-720. [DOI] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES