Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of ‘mycobacterial’ gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific ‘virulence’ factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Keywords: Genomics, Evolution, Mycobacteria, Virulence, COGs
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
References
- 1.Wheeler D.L., Chappey C., Lash A.E., Leipe D.D., Madden T.L., Schuler G.D., Tatusova T.A., Rapp B.A. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2000;28:10–14. doi: 10.1093/nar/28.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., Wheeler D.L. GenBank. Nucleic Acids Res. 2000;28:15–18. doi: 10.1093/nar/28.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Cole S.T. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
- 4.Garnier T. Proc Natl Acad Sci. 2003;100:7877–7882. doi: 10.1073/pnas.1130426100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Brosch R., Gordon S.V., Garnier T., Eiglmeier K., Frigui W., Valenti P., Santos S., Duthoy S., Lacroix C., Garcia-Pelayo C., Inwald J.K., Golby P., Garcia J.N., Hewinson R.G., Behr M.A., Quail M.A., Churcher C., Barrell B.G., Parkhill J., Cole S.T. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci. 2007;104:5596–5601. doi: 10.1073/pnas.0700869104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Cole S.T. Massive gene decay in the leprosy bacillus. Nature. 2001;409:1007–1011. doi: 10.1038/35059006. [DOI] [PubMed] [Google Scholar]
- 8.Stinear T.P. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res. 2007;17:192–200. doi: 10.1101/gr.5942807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Li L. The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci. 2005;102:12344–12349. doi: 10.1073/pnas.0505662102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Nigou J., Gilleron M., Puzo G. Lipoarabinomannans: from structure to biosynthesis. Biochimie. 2003;85:153–166. doi: 10.1016/S0300-9084(03)00048-8. [DOI] [PubMed] [Google Scholar]
- 11.Sutcliffe C. Characterisation of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris. Antonie Van Leeuwenhoek. 2000;78:195–201. doi: 10.1023/A:1026562610490. [DOI] [PubMed] [Google Scholar]
- 12.Flaherty C., Sutcliffe I.C. Identification of a lipoarabinomannan-like lipoglycan in Gordonia rubropertincta. Syst Appl Microbiol. 1999;22:530–533. doi: 10.1016/S0723-2020(99)80005-8. [DOI] [PubMed] [Google Scholar]
- 13.Ma Z., Zhang J., Kong F. Facile synthesis of arabinomannose penta- and decasaccharide fragments of the lipoarabinomannan of the equine pathogen, Rhodococcus equi. Carbohydr Res. 2004;339:1761–1771. doi: 10.1016/j.carres.2004.04.012. [DOI] [PubMed] [Google Scholar]
- 14.Flaherty C., Minnikin D.E., Sutcliffe I.C. A chemotaxonomic study of the lipoglycans of Rhodococcus rhodnii N445 (NCIMB 11279) Zentralbl Bakteriol. 1996;285:11–19. doi: 10.1016/s0934-8840(96)80017-x. [DOI] [PubMed] [Google Scholar]
- 15.Gibson K.J., Gilleron M., Constant P., Brando T., Puzo G., Besra G.S., Nigou J. Tsukamurella paurometabola lipoglycan, a new lipoarabinomannan variant with pro-inflammatory activity. J Biol Chem. 2004;279:22973–22982. doi: 10.1074/jbc.M310906200. [DOI] [PubMed] [Google Scholar]
- 16.Pakkiri L.S., Waechter C.J. Dimannosyldiacylglycerol serves as a lipid anchor precursor in the assembly of the membrane-associated lipomannan in Micrococcus luteus. Glycobiology. 2005;15:291–302. doi: 10.1093/glycob/cwi003. [DOI] [PubMed] [Google Scholar]
- 17.Gibson K.J., Gilleron M., Constant P., Sichi B., Puzo G., Besra G.S., Nigou J. lipomannan variant with strong TLR-2-dependent pro-inflammatory activity in Saccharothrix aerocolonigenes. J Biol Chem. 2005;280:28347–28356. doi: 10.1074/jbc.M505498200. [DOI] [PubMed] [Google Scholar]
- 18.Gibson K.J., Gilleron M., Constant P., Puzo G., Nigou J., Besra G.S. Identification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea. Biochem J. 2003;372:821–829. doi: 10.1042/BJ20030197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Daffe M., McNeil M., Brennan P.J. Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr Res. 1993;249:383–398. doi: 10.1016/0008-6215(93)84102-C. [DOI] [PubMed] [Google Scholar]
- 20.Sutcliffe I.C. Cell envelope composition and organisation in the genus Rhodococcus. Antonie Van Leeuwenhoek. 1998;74:49–58. doi: 10.1023/A:1001747726820. [DOI] [PubMed] [Google Scholar]
- 21.Tropis M., Lemassu A., Vincent V., Daffe M. Structural elucidation of the predominant motifs of the major cell wall arabinogalactan antigens from the borderline species Tsukamurella paurometabolum and Mycobacterium fallax. Glycobiology. 2005;15:677–686. doi: 10.1093/glycob/cwi052. [DOI] [PubMed] [Google Scholar]
- 22.Barry C.E., 3rd, Lee R.E., Mdluli K., Sampson A.E., Schroeder B.G., Slayden R.A., Yuan Y. Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res. 1998;37:143–179. doi: 10.1016/S0163-7827(98)00008-3. [DOI] [PubMed] [Google Scholar]
- 23.Weinstock G.M. Genomics and bacterial pathogenesis. Emerg Infect Dis. 2000;6:496–504. doi: 10.3201/eid0605.000509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Guilhot C., Gicquel B., Martín C. Temperaturesensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett. 1992;77:181–186. doi: 10.1111/j.1574-6968.1992.tb05510.x. [DOI] [PubMed] [Google Scholar]
- 25.Bardarov S., Kriakov J., Carriere C., Yu S., Vaamonde C., Mc-Adam R.A., Bloom B.R., Hatfull G.F., Jacobs W.R., Jr Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci. 1997;94:10961–10966. doi: 10.1073/pnas.94.20.10961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lamichhane G., Zignol M., Blades N.J., Geiman D.E., Dougherty A., Grosset J., Broman K.W., Bishai W.R. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci. 2003;100:7213–7218. doi: 10.1073/pnas.1231432100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Camacho L.R., Ensergueix D., Perez E., Gicquel B., Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999;34:257–267. doi: 10.1046/j.1365-2958.1999.01593.x. [DOI] [PubMed] [Google Scholar]
- 28.Cox J.S., Chen B., McNeil M., Jacobs W.R., Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature. 1999;402:79–83. doi: 10.1038/47042. [DOI] [PubMed] [Google Scholar]
- 29.Sassetti C.M., Boyd D.H., Rubin E.J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci. 2001;98:12712–12717. doi: 10.1073/pnas.231275498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Sassetti C.M., Boyd D.H., Rubin E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003;48:77–84. doi: 10.1046/j.1365-2958.2003.03425.x. [DOI] [PubMed] [Google Scholar]
- 31.Sassetti C.M., Rubin E.J. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci. 2003;100:12989–12994. doi: 10.1073/pnas.2134250100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Heifets L. Mycobacterial infections caused by nontuberculous mycobacteria. Semin Respir Crit Care Med. 2004;25:283–295. doi: 10.1055/s-2004-829501. [DOI] [PubMed] [Google Scholar]
- 33.Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P.A., Kämpfer P., Maiden M.C., Nesme X., Rosselló-Mora R., Swings J., Trüper H.G., Vauterin L., Ward A.C., Whitman W.B. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol. 2002;52:1043–1047. doi: 10.1099/ijs.0.02360-0. [DOI] [PubMed] [Google Scholar]
- 34.Snel B., Huynen M.A., Dutilh B.E. Genome trees and the nature of genome evolution. Annu Rev Microbiol. 2005;59:191–209. doi: 10.1146/annurev.micro.59.030804.121233. [DOI] [PubMed] [Google Scholar]
- 35.Adékambi T., Drancourt M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol. 2004;54:2095–2105. doi: 10.1099/ijs.0.63094-0. [DOI] [PubMed] [Google Scholar]
- 36.Devulder G., Pérouse de Montclos M., Flandrois J.P. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol. 2005;55:293–302. doi: 10.1099/ijs.0.63222-0. [DOI] [PubMed] [Google Scholar]
- 37.Brosch R., Gordon S.V., Marmiesse M., Brodin P., Buchrieser C., Eiglmeier K., Garnier T., Gutierrez C., Hewinson G., Kremer K., Parsons L.M., Pym A.S., Samper S., Soolingen D., Cole S.T. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci. 2002;99:3684–3689. doi: 10.1073/pnas.052548299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Marsollier L., Aubry J., Coutanceau E., André J.P., Small P.L., Milon G., Legras P., Guadagnini S., Carbonnelle B., Cole S.T. Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell Microbiol. 2005;7:935–943. doi: 10.1111/j.1462-5822.2005.00521.x. [DOI] [PubMed] [Google Scholar]
- 39.Marsollier L., Sévérin T., Aubry J., Merritt R.W., Saint André J.P., Legras P., Manceau A.L., Chauty A., Carbonnelle B., Cole S.T. Aquatic snails, passive hosts of Mycobacterium ulcerans. Appl Environ Microbiol. 2004;70:6296–6298. doi: 10.1128/AEM.70.10.6296-6298.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Marsollier L., Stinear T., Aubry J., Saint André J.P., Robert R., Legras P., Manceau A.L., Audrain C., Bourdon S., Kouakou H., Carbonnelle B. Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol. 2004;70:1097–1103. doi: 10.1128/AEM.70.2.1097-1103.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Bannantine J.P., Zhang Q., Li L.L., Kapur V. Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates. BMC Microbiol. 2003;3:10. doi: 10.1186/1471-2180-3-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Vissa VD and Brennan PJ (2001) The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol. 2:REVIEWS1023 [DOI] [PMC free article] [PubMed]
- 43.Gómez-Valero L., Rocha E.P., Latorre A., Silva F.J. Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. Genome Res. 2007;17:1178–1185. doi: 10.1101/gr.6360207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Tatusov R.L., Natale D.A., Garkavtsev I.V., Tatusova T.A., Shankavaram U.T., Rao B.S., Kiryutin B., Galperin M.Y., Fedorova N.D., Koonin E.V. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–28. doi: 10.1093/nar/29.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Banu S., Honoré N., Saint-Joanis B., Philpott D., Prévost M.C., Cole S.T. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol. 2002;44:9–19. doi: 10.1046/j.1365-2958.2002.02813.x. [DOI] [PubMed] [Google Scholar]
- 46.Ramakrishnan L., Federspiel N.A., Falkow S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science. 2000;288:1436–1439. doi: 10.1126/science.288.5470.1436. [DOI] [PubMed] [Google Scholar]
- 47.Marchler-Bauer A., Bryant S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–W331. doi: 10.1093/nar/gkh454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Marchler-Bauer A., Anderson J.B., Cherukuri P.F., DeWeese-Scott C., Geer L.Y., Gwadz M., He S., Hurwitz D.I., Jackson J.D., Ke Z., Lanczycki C., Liebert C.A., Liu C., Lu F., Marchler G.H., Mullokandov M., Shoemaker B.A., Simonyan V., Song J.S., Thiessen P.A., Yamashita R.A., Yin J.J., Zhang D., Bryant S.H. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 2005;33:D192–D196. doi: 10.1093/nar/gki069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Voskuil M.I., Schnappinger D., Rutherford R., Liu Y., Schoolnik G.K. Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis. 2004;84:256–262. doi: 10.1016/j.tube.2003.12.014. [DOI] [PubMed] [Google Scholar]
- 50.Brennan M.J., Delogu G. The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol. 2002;10:246–249. doi: 10.1016/S0966-842X(02)02335-1. [DOI] [PubMed] [Google Scholar]
- 51.Delogu G., Sanguinetti M., Pusceddu C., Bua A., Brennan M.J., Zanetti S., Fadda G. PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect. 2006;8:2061–2067. doi: 10.1016/j.micinf.2006.03.015. [DOI] [PubMed] [Google Scholar]
- 52.Delogu G., Brennan M.J. Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect Immun. 2001;69:5606–5611. doi: 10.1128/IAI.69.9.5606-5611.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Kumar A., Chandolia A., Chaudhry U., Brahmachari V., Bose M. Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol. 2005;43:185–195. doi: 10.1016/j.femsim.2004.08.013. [DOI] [PubMed] [Google Scholar]
- 54.Abdallah A.M., Gey van Pittius N.C., Champion P.A., Cox J., Luirink J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Bitter W. Type VII secretion—mycobacteria show the way. Nat Rev Microbiol. 2007;5:883–891. doi: 10.1038/nrmicro1773. [DOI] [PubMed] [Google Scholar]
- 55.Fortune S.M., Jaeger A., Sarracino D.A., Chase M.R., Sassetti C.M., Sherman D.R., Bloom B.R., Rubin E.J. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci. 2005;102:10676–10681. doi: 10.1073/pnas.0504922102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Gey van Pittius N.C., Sampson S.L., Lee H., Kim Y., van Helden P.D., Warren R.M. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol. 2006;6:95. doi: 10.1186/1471-2148-6-95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Onwueme K.C., Vos C.J., Zurita J., Ferreras J.A., Quadri L.E. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res. 2005;44:259–302. doi: 10.1016/j.plipres.2005.07.001. [DOI] [PubMed] [Google Scholar]
- 58.DiGiuseppe Champion P.A., Cox J.S. Protein secretion systems in Mycobacteria. Cell Microbiol. 2007;9:1376–1384. doi: 10.1111/j.1462-5822.2007.00943.x. [DOI] [PubMed] [Google Scholar]
- 59.Casali N., Riley L.W. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics. 2007;8:60. doi: 10.1186/1471-2164-8-60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Marri P.R., Bannantine J.P., Golding G.B. Comparative genomics of metabolic pathways in Mycobacterium species: gene duplication, gene decay and lateral gene transfer. FEMS Microbiol Rev. 2006;30:906–925. doi: 10.1111/j.1574-6976.2006.00041.x. [DOI] [PubMed] [Google Scholar]
- 61.Russell D.G. Phagosomes, fatty acids and tuberculosis. Nat Cell Biol. 2003;5:776–778. doi: 10.1038/ncb0903-776. [DOI] [PubMed] [Google Scholar]
- 62.Geize R., Yam K., Heuser T., Wilbrink M.H., Hara H., Anderton M.C., Sim E., Dijkhuizen L., Davies J.E., Mohn W.W., Eltis L.D. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci. 2007;104:1947–1952. doi: 10.1073/pnas.0605728104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Kato-Maeda M., Rhee J.T., Gingeras T.R., Salamon H., Drenkow J., Smittipat N., Small P.M. Comparing genomes within the species Mycobacterium tuberculosis. Genome Res. 2001;11:547–554. doi: 10.1101/gr.166401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Tsolaki A.G., Hirsh A.E., DeRiemer K., Enciso J.A., Wong M.Z., Hannan M., Goguet de la Salmoniere Y.O., Aman K., Kato-Maeda M., Small P.M. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci. 2004;101:4865–4870. doi: 10.1073/pnas.0305634101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Ren H., Dover L.G., Islam S.T., Alexander D.C., Chen J.M., Besra G.S., Liu J. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol. 2007;63:1345–1359. doi: 10.1111/j.1365-2958.2007.05603.x. [DOI] [PubMed] [Google Scholar]
- 66.Rousseau C., Sirakova T.D., Dubey V.S., Bordat Y., Kolattukudy P.E., Gicquel B., Jackson M. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology. 2003;149:1837–1847. doi: 10.1099/mic.0.26278-0. [DOI] [PubMed] [Google Scholar]
- 67.Fleischmann R.D., Alland D., Eisen J.A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M., Haft D., Hickey E., Kolonay J.F., Nelson W.C., Umayam L.A., Ermolaeva M., Salzberg S.L., Delcher A., Utterback T., Weidman J., Khouri H., Gill J., Mikula A., Bishai W., Jacobs W.R., Jr, Venter J.C., Fraser C.M. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol. 2002;184:5479–5490. doi: 10.1128/JB.184.19.5479-5490.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Viana-Niero C., Haas P.E., Soolingen D., Leao S.C. Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology. 2004;150:967–978. doi: 10.1099/mic.0.26778-0. [DOI] [PubMed] [Google Scholar]
- 69.Yang Z., Yang D., Kong Y., Zhang L., Marrs C.F., Foxman B., Bates J.H., Wilson F., Cave M.D. Clinical relevance of Mycobacterium tuberculosis plcD gene mutations. Am J Respir Crit Care Med. 2005;171:1436–1442. doi: 10.1164/rccm.200408-1147OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Soolingen D., Qian L., Haas P.E., Douglas J.T., Traore H., Portaels F., Qing H.Z., Enkhsaikan D., Nymadawa P., Embden J.D. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol. 1995;33:3234–3238. doi: 10.1128/jcm.33.12.3234-3238.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.European Concerted Action on New Generation Genetic MarkersTechniques for the EpidemiologyControl of Tuberculosis Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis. 2006;12:736–743. doi: 10.3201/eid1205.050400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Abebe F., Bjune G. The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette-Guérin (BCG) vaccines: is there a link? Clin Exp Immunol. 2006;145:389–397. doi: 10.1111/j.1365-2249.2006.03162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Bifani P.J., Mathema B., Kurepina N.E., Kreiswirth B.N. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol. 2002;10:45–52. doi: 10.1016/S0966-842X(01)02277-6. [DOI] [PubMed] [Google Scholar]
- 74.Kong Y., Cave M.D., Zhang L., Foxman B., Marrs C.F., Bates J.H., Yang Z.H. Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: Insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol. 2007;45:409–414. doi: 10.1128/JCM.01459-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Dormans J., Burger M., Aguilar D., Hernandez-Pando R., Kremer K., Roholl P., Arend S.M., Soolingen D. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137:460–468. doi: 10.1111/j.1365-2249.2004.02551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Turenne C.Y., Wallace R., Jr, Behr M.A. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev. 2007;20:205–229. doi: 10.1128/CMR.00036-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Semret M., Turenne C.Y., Haas P., Collins D.M., Behr M.A. Differentiating host-associated variants of Mycobacterium avium by PCR for detection of large sequence polymorphisms. J Clin Microbiol. 2006;44:881–887. doi: 10.1128/JCM.44.3.881-887.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Motiwala A.S., Li L., Kapur V., Sreevatsan S. Current understanding of the genetic diversity of Mycobacterium avium subsp. paratuberculosis. Microbes Infect. 2006;8:1406–1418. doi: 10.1016/j.micinf.2005.12.003. [DOI] [PubMed] [Google Scholar]
- 79.Danelishvili L., Wu M., Stang B., Harriff M., Cirillo S.L., Cirillo J.D., Bildfell R., Arbogast B., Bermudez L.E. Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc Natl Acad Sci. 2007;104:11038–11043. doi: 10.1073/pnas.0610746104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Wren B.W. The yersiniae — a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol. 2003;1:55–64. doi: 10.1038/nrmicro730. [DOI] [PubMed] [Google Scholar]
- 81.Kim H.S., Schell M.A., Yu Y., Ulrich R.L., Sarria S.H., Nierman W.C., DeShazer D. Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics. 2005;6:174. doi: 10.1186/1471-2164-6-174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Pérez E., Constant P., Lemassu A., Laval F., Daffé M., Guilhot C. Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J Biol Chem. 2004;279:42574–42583. doi: 10.1074/jbc.M406246200. [DOI] [PubMed] [Google Scholar]
- 83.Pérez E., Constant P., Laval F., Lemassu A., Lanéelle M.A., Daffé M., Guilhot C. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem. 2004;279:42584–42592. doi: 10.1074/jbc.M406134200. [DOI] [PubMed] [Google Scholar]
- 84.Cho S.N., Yanagihara D.L., Hunter S.W., Gelber R.H., Brennan P.J. Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect Immun. 1983;41:1077–1083. doi: 10.1128/iai.41.3.1077-1083.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Mwanatambwe M., Yajima M., Etuaful S., Fukunishi Y., Suzuki K., Asiedu K., Yamada N., Asanao G. Phenolic glycolipid-1 (PGL-1) in Buruli ulcer lesions. First demonstration by immuno-histochemistry. Int J Lepr Other Mycobact Dis. 2002;70:201–205. [PubMed] [Google Scholar]
- 86.Daffé M., Varnerot A., Lévy-Frébault V.V. The phenolic mycoside of Mycobacterium ulcerans: structure and taxonomic implications. J Gen Microbiol. 1992;138:131–137. doi: 10.1099/00221287-138-1-131. [DOI] [PubMed] [Google Scholar]
- 87.Käser M., Rondini S., Naegeli M., Stinear T., Portaels F., Certa U., Pluschke G. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans. BMC Evol Biol. 2007;7:177. doi: 10.1186/1471-2148-7-177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Brennan P.J., Vissa V.D. Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Lepr Rev. 2001;72:415–428. doi: 10.5935/0305-7518.20010050. [DOI] [PubMed] [Google Scholar]
- 89.Eiglmeier K., Parkhill J., Honoré N., Garnier T., Tekaia F., Telenti A., Klatser P., James K.D., Thomson N.R., Wheeler P.R., Churcher C., Harris D., Mungall K., Barrell B.G., Cole S.T. The decaying genome of Mycobacterium leprae. Lepr Rev. 2001;72:387–398. [PubMed] [Google Scholar]
- 90.Bailey A.M., Mahapatra S., Brennan P.J., Crick D.C. Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase. Glycobiology. 2002;12:813–820. doi: 10.1093/glycob/cwf100. [DOI] [PubMed] [Google Scholar]
- 91.Dhiman R.K., Schaeffer M.L., Bailey A.M., Testa C.A., Scherman H., Crick D.C. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin. J Bacteriol. 2005;187:8395–8402. doi: 10.1128/JB.187.24.8395-8402.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Eoh H., Brown A.C., Buetow L., Hunter W.N., Parish T., Kaur D., Brennan P.J., Crick D.C. Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: potential for drug development. J Bacteriol. 2007;189:8922–8927. doi: 10.1128/JB.00925-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Buetow L., Brown A.C., Parish T., Hunter W.N. The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol. 2007;7:68. doi: 10.1186/1472-6807-7-68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Schulbach M.C., Brennan P.J., Crick D.C. Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J Biol Chem. 2000;275:22876–22881. doi: 10.1074/jbc.M003194200. [DOI] [PubMed] [Google Scholar]
- 95.Dhiman R.K., Schulbach M.C., Mahapatra S., Baulard A.R., Vissa V., Brennan P.J., Crick D.C. Identification of a novel class of omega,E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res. 2004;45:1140–1147. doi: 10.1194/jlr.M400047-JLR200. [DOI] [PubMed] [Google Scholar]
- 96.Smet K.A., Kempsell K.E., Gallagher A., Duncan K., Young D.B. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology. 1999;145:3177–3184. doi: 10.1099/00221287-145-11-3177. [DOI] [PubMed] [Google Scholar]
- 97.Mahapatra S., Crick D.C., Brennan P.J. Comparison of the UDP-N-acetylmuramate:L-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J Bacteriol. 2000;182:6827–6830. doi: 10.1128/JB.182.23.6827-6830.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Mahapatra S., Yagi T., Belisle J.T., Espinosa B.J., Hill P.J., McNeil M.R., Brennan P.J., Crick D.C. Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol. 2005;187:2747–2757. doi: 10.1128/JB.187.8.2747-2757.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Bhakta S., Basu J. Overexpression, purification and biochemical characterization of a class A high-molecular-mass penicillin-binding protein (PBP), PBP1* and its soluble derivative from Mycobacterium tuberculosis. Biochem J. 2002;361:635–669. doi: 10.1042/0264-6021:3610635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Ma Y., Stern R.J., Scherman M.S., Vissa V.D., Yan W., Jones V.C., Zhang F., Franzblau S.G., Lewis W.H., McNeil M.R. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother. 2001;45:1407–1416. doi: 10.1128/AAC.45.5.1407-1416.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Weston A., Stern R.J., Lee R.E., Nassau P.M., Monsey D., Martin S.L., Scherman M.S., Besra G.S., Duncan K., McNeil M.R. Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber Lung Dis. 1997;78:123–131. doi: 10.1016/S0962-8479(98)80005-1. [DOI] [PubMed] [Google Scholar]
- 102.Sanders D.A., Staines A.G., McMahon S.A., McNeil M.R., Whitfield C., Naismith J.H. UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Biol. 2001;8:858–863. doi: 10.1038/nsb1001-858. [DOI] [PubMed] [Google Scholar]
- 103.Mikusová K., Huang H., Yagi T., Holsters M., Vereecke D., D’Haeze W., Scherman M.S., Brennan P.J., McNeil M.R., Crick D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol. 2005;187:8020–8025. doi: 10.1128/JB.187.23.8020-8025.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Mills J.A., Motichka K., Jucker M., Wu H.P., Uhlik B.C., Stern R.J., Scherman M.S., Vissa V.D., Pan F., Kundu M., Ma Y.F., McNeil M. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J Biol Chem. 2004;279:43540–43546. doi: 10.1074/jbc.M407782200. [DOI] [PubMed] [Google Scholar]
- 105.Kremer L., Dover L.G., Morehouse C., Hitchin P., Everett M., Morris H.R., Dell A., Brennan P.J., McNeil M.R., Flaherty C., Duncan K., Besra G.S. Galactan biosynthesis in Mycobacterium tuberculosis. Identification of a bifunctional UDP-galactofuranosyltransferase. J Biol Chem. 2001;276:26430–26440. doi: 10.1074/jbc.M102022200. [DOI] [PubMed] [Google Scholar]
- 106.Mikusova K., Belanova M., Kordulakova J., Honda K., Mc-Neil M.R., Mahapatra S., Crick D.C., Brennan P.J. Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J Bacteriol. 2006;188:6592–6598. doi: 10.1128/JB.00489-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Alderwick L.J., Seidel M., Sahm H., Besra G.S., Eggeling L. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem. 2006;281:15653–15661. doi: 10.1074/jbc.M600045200. [DOI] [PubMed] [Google Scholar]
- 108.Belanger A.E., Besra G.S., Ford M.E., Mikusová K., Belisle J.T., Brennan P.J., Inamine J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci. 1996;93:11919–11924. doi: 10.1073/pnas.93.21.11919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Seidel M., Alderwick L.J., Birch H.L., Sahm H., Eggeling L., Besra G.S. Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem. 2007;282:14729–14740. doi: 10.1074/jbc.M700271200. [DOI] [PubMed] [Google Scholar]
- 110.Fernandes N.D., Kolattukudy P.E. Cloning, sequencing and characterization of a fatty acid synthaseencoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene. 1996;170:95–99. doi: 10.1016/0378-1119(95)00842-X. [DOI] [PubMed] [Google Scholar]
- 111.Daniel J., Oh T.J., Lee C.M., Kolattukudy P.E. AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol. 2007;189:911–917. doi: 10.1128/JB.01019-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Mdluli K., Slayden R.A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D.D., Musser J.M., Barry C.E., 3rd Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science. 1998;280:1607–1610. doi: 10.1126/science.280.5369.1607. [DOI] [PubMed] [Google Scholar]
- 113.Kremer L., Nampoothiri K.M., Lesjean S., Dover L.G., Graham S., Betts J., Brennan P.J., Minnikin D.E., Locht C., Besra G.S. Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J Biol Chem. 2001;276:27967–27974. doi: 10.1074/jbc.M103687200. [DOI] [PubMed] [Google Scholar]
- 114.Choi K.H., Kremer L., Besra G.S., Rock C.O. Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem. 2000;275:28201–28207. doi: 10.1074/jbc.M003241200. [DOI] [PubMed] [Google Scholar]
- 115.Schaeffer M.L., Agnihotri G., Volker C., Kallender H., Brennan P.J., Lonsdale J.T. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem. 2001;276:47029–47037. doi: 10.1074/jbc.M108903200. [DOI] [PubMed] [Google Scholar]
- 116.Marrakchi H., Ducasse S., Labesse G., Montrozier H., Margeat E., Emorine L., Charpentier X., Daffé M., Quémard A. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology. 2002;148:951–960. doi: 10.1099/00221287-148-4-951. [DOI] [PubMed] [Google Scholar]
- 117.Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K.S., Wilson T., Collins D., Lisle G., Jacobs W.R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994;263:227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
- 118.Yuan Y, Lee RE, Besra GS, Belisle JT and Barry C.E 3rd (1995) Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci 6630–6634 [DOI] [PMC free article] [PubMed]
- 119.Glickman M.S., Cahill S.M., Jacobs W.R., Jr. The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem. 2001;276:2228–2233. doi: 10.1074/jbc.C000652200. [DOI] [PubMed] [Google Scholar]
- 120.Yuan Y., Barry C.E., 3rd A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci. 1996;93:12828–12833. doi: 10.1073/pnas.93.23.12828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Glickman M.S. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J Biol Chem. 2003;278:7844–7849. doi: 10.1074/jbc.M212458200. [DOI] [PubMed] [Google Scholar]
- 122.Laval F., Haites R., Movahedzadeh F., Lemassu A., Wong C.Y., Stoker N., Billman-Jacobe H., Daffé M. Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J Biol Chem. 2008;283:1419–1427. doi: 10.1074/jbc.M708859200. [DOI] [PubMed] [Google Scholar]
- 123.Glickman M.S., Cox J.S., Jacobs W.R., Jr A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell. 2000;5:717–727. doi: 10.1016/S1097-2765(00)80250-6. [DOI] [PubMed] [Google Scholar]
- 124.Dyer D.H., Lyle K.S., Rayment I., Fox B.G. X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv. Protein Sci. 2005;14:1508–1517. doi: 10.1110/ps.041288005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Portevin D., Sousa-D’Auria C., Montrozier H., Houssin C., Stella A., Lanéelle M.A., Bardou F., Guilhot C., Daffé M. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem. 2005;280:8862–8874. doi: 10.1074/jbc.M408578200. [DOI] [PubMed] [Google Scholar]
- 126.Lin T.W., Melgar M.M., Kurth D., Swamidass S.J., Purdon J., Tseng T., Gago G., Baldi P., Gramajo H., Tsai S.C. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci. 2006;103:3072–3077. doi: 10.1073/pnas.0510580103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Portevin D., Sousa-D’Auria C., Houssin C., Grimaldi C., Chami M., Daffé M., Guilhot C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci. 2004;101:314–319. doi: 10.1073/pnas.0305439101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Belisle J.T., Vissa V.D., Sievert T., Takayama K., Brennan P.J., Besra G.S. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science. 1997;276:1420–1422. doi: 10.1126/science.276.5317.1420. [DOI] [PubMed] [Google Scholar]
- 129.Azad A.K., Sirakova T.D., Rogers L.M., Kolattukudy P.E. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci. 1996;93:4787–4792. doi: 10.1073/pnas.93.10.4787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Camacho L.R., Constant P., Raynaud C., Laneelle M.A., Triccas J.A., Gicquel B., Daffe M., Guilhot C. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem. 2001;276:19845–19854. doi: 10.1074/jbc.M100662200. [DOI] [PubMed] [Google Scholar]
- 131.Stadthagen G., Korduláková J., Griffin R., Constant P., Bottová I., Barilone N., Gicquel B., Daffé M., Jackson M. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J Biol Chem. 2005;280:40699–40706. doi: 10.1074/jbc.M508332200. [DOI] [PubMed] [Google Scholar]
- 132.Azad A.K., Sirakova T.D., Fernandes N.D., Kolattukudy P.E. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem. 1997;272:16741–16745. doi: 10.1074/jbc.272.27.16741. [DOI] [PubMed] [Google Scholar]
- 133.Choudhuri B.S., Bhakta S., Barik R., Basu J., Kundu M., Chakrabarti P. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J. 2002;367:279–285. doi: 10.1042/BJ20020615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Onwueme K.C., Ferreras J.A., Buglino J., Lima C.D., Quadri L.E. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci. 2004;101:4608–4613. doi: 10.1073/pnas.0306928101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Constant P., Perez E., Malaga W., Lanéelle M.A., Saurel O., Daffé M., Guilhot C. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem. 2002;277:38148–38158. doi: 10.1074/jbc.M206538200. [DOI] [PubMed] [Google Scholar]
- 136.Hotter G.S., Wards B.J., Mouat P., Besra G.S., Gomes J., Singh M., Bassett S., Kawakami P., Wheeler P.R., Lisle G.W., Collins D.M. Transposon mutagenesis of Mb0100 at the ppe1-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG. J Bacteriol. 2006;187:2267–2277. doi: 10.1128/JB.187.7.2267-2277.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Sulzenbacher G., Canaan S., Bordat Y., Neyrolles O., Stadthagen G., Roig-Zamboni V., Rauzier J., Maurin D., Laval F., Daffé M., Cambillau C., Gicquel B., Bourne Y., Jackson M. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 2006;25:1436–1444. doi: 10.1038/sj.emboj.7601048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Siméone R., Constant P., Guilhot C., Daffé M., Chalut C. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis. J Bacteriol. 2007;189:4597–4602. doi: 10.1128/JB.00169-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Siméone R., Constant P., Malaga W., Guilhot C., Daffé M., Chalut C. Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J. 2007;274:1957–1969. doi: 10.1111/j.1742-4658.2007.05740.x. [DOI] [PubMed] [Google Scholar]
- 140.Sirakova T.D., Dubey V.S., Cynamon M.H., Kolattukudy P.E. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol. 2003;185:2999–3008. doi: 10.1128/JB.185.10.2999-3008.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Sirakova T.D., Dubey V.S., Kim H.J., Cynamon M.H., Kolattukudy P.E. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genomes involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun. 2003;71:3794–3801. doi: 10.1128/IAI.71.7.3794-3801.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Dubey V.S., Sirakova T.D., Cynamon M.H., Kolattukudy P.E. Biochemical function of msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. J Bacteriol. 2003;185:4620–4625. doi: 10.1128/JB.185.15.4620-4625.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Gurcha S.S., Baulard A.R., Kremer L., Locht C., Moody D.B., Muhlecker W., Costello C.E., Crick D.C., Brennan P.J., Besra G.S. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem J. 2002;365:441–450. doi: 10.1042/BJ20020107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Jackson M., Crick D.C., Brennan P.J. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem. 2000;275:30092–30099. doi: 10.1074/jbc.M004658200. [DOI] [PubMed] [Google Scholar]
- 145.Korduláková J., Gilleron M., Puzo G., Brennan P.J., Gicquel B., Mikusová K., Jackson M. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of mycobacterium species. J Biol Chem. 2003;278:36285–36295. doi: 10.1074/jbc.M303639200. [DOI] [PubMed] [Google Scholar]
- 146.Korduláková J., Gilleron M., Mikusova K., Puzo G., Brennan P.J., Gicquel B., Jackson M. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J Biol Chem. 2002;277:31335–31344. doi: 10.1074/jbc.M204060200. [DOI] [PubMed] [Google Scholar]
- 147.Schaeffer M.L., Khoo K.H., Besra G.S., Chatterjee D., Brennan P.J., Belisle J.T., Inamine J.M. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem. 1999;274:31625–31631. doi: 10.1074/jbc.274.44.31625. [DOI] [PubMed] [Google Scholar]
- 148.Tatituri R.V., Illarionov P.A., Dover L.G., Nigou J., Gilleron M., Hitchen P., Krumbach K., Morris H.R., Spencer N., Dell A., Eggeling L., Besra G.S. Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem. 2007;282:4561–4572. doi: 10.1074/jbc.M608695200. [DOI] [PubMed] [Google Scholar]
- 149.Kremer L., Gurcha S.S., Bifani P., Hitchen P.G., Baulard A., Morris H.R., Dell A., Brennan P.J., Besra G.S. Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem J. 2002;363:437–447. doi: 10.1042/0264-6021:3630437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Morita Y.S., Sena C.B., Waller R.F., Kurokawa K., Sernee M.F., Nakatani F., Haites R.E., Billman-Jacobe H., McConville M.J., Maeda Y., Kinoshita T. PimE is a polyprenolphosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem. 2006;281:25143–25155. doi: 10.1074/jbc.M604214200. [DOI] [PubMed] [Google Scholar]
- 151.Kaur D., Berg S., Dinadayala P., Gicquel B., Chatterjee D., McNeil M.R., Vissa V.D., Crick D.C., Jackson M., Brennan P.J. Biosynthesis of mycobacterial lipoarabinomannan: role of a branching mannosyltransferase. Proc Natl Acad Sci. 2006;103:13664–13669. doi: 10.1073/pnas.0603049103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Zhang N., Torrelles J.B., McNeil M.R., Escuyer V.E., Khoo K.H., Brennan P.J., Chatterjee D. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol. 2003;50:69–76. doi: 10.1046/j.1365-2958.2003.03681.x. [DOI] [PubMed] [Google Scholar]
- 153.Jeevarajah D., Patterson J.H., McConville M.J., Billman-Jacobe H. Modification of glycopeptidolipids by an O-methyltransferase of Mycobacterium smegmatis. 2002;148:3079–3087. doi: 10.1099/00221287-148-10-3079. [DOI] [PubMed] [Google Scholar]
- 154.Jeevarajah D., Patterson J.H., Taig E., Sargeant T., McConville M.J., Billman-Jacobe H. Methylation of GPLs in Mycobacterium smegmatis and Mycobacterium avium. J Bacteriol. 2004;186:6792–6799. doi: 10.1128/JB.186.20.6792-6799.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Patterson J.H., McConville M.J., Haites R.E., Coppel R.L., Billman-Jacobe H. Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem. 2000;275:24900–24906. doi: 10.1074/jbc.M000147200. [DOI] [PubMed] [Google Scholar]
- 156.Miyamoto Y., Mukai T., Nakata N., Maeda Y., Kai M., Naka T., Yano I., Makino M. Identification and characterization of the genes involved in glycosylation pathways of mycobacterial glycopeptidolipid biosynthesis. J Bacteriol. 2006;188:86–95. doi: 10.1128/JB.188.1.86-95.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Recht J., Kolter R. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol. 2001;183:5718–5724. doi: 10.1128/JB.183.19.5718-5724.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Billman-Jacobe H., McConville M.J., Haites R.E., Kovacevic S., Coppel R.L. Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol Microbiol. 1999;33:1244–1253. doi: 10.1046/j.1365-2958.1999.01572.x. [DOI] [PubMed] [Google Scholar]
- 159.Sonden B., Kocincova D., Deshayes C., Euphrasie D., Rhayat L., Laval F., Frehel C., Daffe M., Etienne G., Reyrat J.M. Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol. Microbiol. 2005;58:426–440. doi: 10.1111/j.1365-2958.2005.04847.x. [DOI] [PubMed] [Google Scholar]
- 160.Trivedi O.A., Arora P., Sridharan V., Tickoo R., Mohanty D., Gokhale R.S. Enzymatic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature. 2004;428:441–445. doi: 10.1038/nature02384. [DOI] [PubMed] [Google Scholar]
- 161.Deshayes C., Laval F., Montrozier H., Daffe M., Etienne G., Reyrat J.M. A Glycosyltransferase Involved in Biosynthesis of Triglycosylated Glycopeptidolipids in Mycobacterium smegmatis: Impact on Surface Properties. J. Bacteriol. 2005;187:7283–7291. doi: 10.1128/JB.187.21.7283-7291.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Miyamoto Y., Mukai T., Nakata N., Maeda Y., Kai M., Naka T., Yano I., Makino M. Identification and characterization of the genes involved in glycosylation pathways of mycobacterial glycopeptidolipid biosynthesis. J. Bacteriol. 2006;188:86–95. doi: 10.1128/JB.188.1.86-95.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Sirakova T.D., Thirumala A.K., Dubey V.S., Sprecher H., Kolattukudy P.E. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem. 2001;276:16833–16839. doi: 10.1074/jbc.M011468200. [DOI] [PubMed] [Google Scholar]
- 164.Converse S.E., Mougous J.D., Leavell M.D., Leary J.A., Bertozzi C.R., Cox J.S. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci. 2003;100:6121–6126. doi: 10.1073/pnas.1030024100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Kumar P., Schelle M.W., Jain M., Lin F.L., Petzold C.J., Leavell M.D., Leary J.A., Cox J.S., Bertozzi C.R. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci. 2007;104:11221–11226. doi: 10.1073/pnas.0611649104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Mougous J.D., Petzold C.J., Senaratne R.H., Lee D.H., Akey D.L., Lin F.L., Munchel S.E., Pratt M.R., Riley L.W., Leary J.A., Berger J.M., Bertozzi C.R. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol. 2004;11:721–729. doi: 10.1038/nsmb802. [DOI] [PubMed] [Google Scholar]
- 167.Tzvetkov M., Klopprogge C., Zelder O., Liebl W. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology. 2003;149:1659–1673. doi: 10.1099/mic.0.26205-0. [DOI] [PubMed] [Google Scholar]
- 168.Wolf A., Kramer R., Morbach S. Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol. 2003;49:1119–1134. doi: 10.1046/j.1365-2958.2003.03625.x. [DOI] [PubMed] [Google Scholar]
- 169.Woodruff P.J., Carlson B.L., Siridechadilok B., Pratt M.R., Williams S.J., Bertozzi C.R. Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem. 2004;279:28835–28843. doi: 10.1074/jbc.M313103200. [DOI] [PubMed] [Google Scholar]
- 170.Spencer J.S., Dockrell H.M., Kim H.J., Marques M.A., Williams D.L., Martins M.V., Martins M.L., Lima M.C., Sarno E.N., Pereira G.M., Matos H., Fonseca L.S., Sampaio E.P., Ottenhoff T.H., Geluk A., Cho S.N., Stoker N.G., Cole S.T., Brennan P.J., Pessolani M.C. Identification of specific proteins and peptides in Mycobacterium leprae suitable for the selective diagnosis of leprosy. J Immunol. 2005;175:7930–7938. doi: 10.4049/jimmunol.175.12.7930. [DOI] [PubMed] [Google Scholar]
- 171.Aráoz R., Honoré N., Cho S., Kim J.P., Cho S.N., Monot M., Demangel C., Brennan P.J., Cole S.T. Antigen discovery: a postgenomic approach to leprosy diagnosis. Infect Immun. 2006;74:175–82. doi: 10.1128/IAI.74.1.175-182.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Geluk A., Klein M.R., Franken K.L., Meijgaarden K.E., Wieles B., Pereira K.C., Bührer-Sékula S., Klatser P.R., Brennan P.J., Spencer J.S., Williams D.L., Pessolani M.C., Sampaio E.P., Ottenhoff T.H. Postgenomic approach to identify novel Mycobacterium leprae antigens with potential to improve immunodiagnosis of infection. Infect Immun. 2005;73:5636–5644. doi: 10.1128/IAI.73.9.5636-5644.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Duthie M.S., Goto W., Ireton G.C., Reece S.T., Cardoso L.P., Martelli C.M., Stefani M.M., Nakatani M., Jesus R.C., Netto E.M., Balagon M.V., Tan E., Gelber R.H., Maeda Y., Makino M., Hoft D., Reed S.G. Use of protein antigens for early serological diagnosis of leprosy. Clin Vaccine Immunol. 2007;14:1400–1408. doi: 10.1128/CVI.00299-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Titgemeyer F., Amon J., Parche S., Mahfoud M., Bail J., Schlicht M., Rehm N., Hillmann D., Stephan J., Walter B., Burkovski A., Niederweis M. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol. 2007;189:5903–5915. doi: 10.1128/JB.00257-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G.F., Chater K.F., Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548. doi: 10.1128/MMBR.00005-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
