Abstract
Diarrheal disease continues to be a global health problem, particularly among young ones in developing nations. Amongst several viral and non-viral agents associated with diarrhea, group A rotavirus has been recognized as the major etiological agent of childhood gastroenteritis in human infants as well as several animal species throughout the world. During this study, a total of 181 diarrheic stool samples collected from children, piglets, buffalo and cow calves of Madhya Pradesh, central India were analyzed by electrophoretic mobilities of the 11 segments of dsRNA by polyacrylamide gel electrophoresis (PAGE). This technique revealed prevalence of rotavirus among different species (human-26.09%, pig-25.71%, buffalo-23.61% and cattle-21.43%). Prevalence of existence of circulating 8 different electropherotypes of group A rotaviruses indicated high genomic diversity among rotaviruses in this geographical region. Majority of the electropherotypes from humans and animals were of long pattern (75%) than short electropherotypes (9.09%). Same electropherotype was found to exist either only in a single species or in more than one species implicating the possibility of cross species transmission of the rotavirus strains. As it was found that certain animal rotavirus strains had electropherotypic similarities to some human strains, speculation increased about whether animals play a role as a source of rotavirus infection in humans or vice-versa. There is a need for further detailed study on the molecular characterization of rotaviruses which would have important implication in vaccine evaluation program.
Keywords: Genomic diversity, RNA-electropherotypes, Group A rotaviruses, Diarrheic infants
Full Text
The Full Text of this article is available as a PDF (228.9 KB).
References
- 1.Reinhardt G., Riedemann T., Polettee M., Aguilar M., Niedda M. Diarrhea neonatal. Infection of rotavirus in bovines and porcine. Arch Med Vet. 1986;18:23–27. [Google Scholar]
- 2.Estes M.K., Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989;53:410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Estes M.K., Graham D.Y., Dimitrov D.H. The molecular epidemiology of rotavirus gastroenteritis. Prog Med Virol. 1984;29:1–22. [PubMed] [Google Scholar]
- 4.Tam J.S., Kum W.W., Lam B., Yeng C.Y., Ng M.H. Molecular epidemiology of human rotavirus infection in Hong Kong. J Clin Microbiol. 1986;23:660–664. doi: 10.1128/jcm.23.3.660-664.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Singh V., Broor S., Mehta S., Mehta S.K. Molecular epidemiology of human rotavirus infections in Chandigarh (India) Indian J Med Res. 1990;91:9–14. [PubMed] [Google Scholar]
- 6.Blumer C., Roche P., Kirkwood C., Bishop R., Barnes G. Surveillance of viral pathogens in Australia. Commun Dis Intellig. 2003;27:496–503. doi: 10.33321/cdi.2003.27.79. [DOI] [PubMed] [Google Scholar]
- 7.Albert M.J., Soenarto Y., Bishop R.F. Epidemiology of rotavirus diarrhea in Yogyakarta, Indonesia, as revealed by electrophoresis of genome RNA. J Clin Microbiol. 1982;16:731–733. doi: 10.1128/jcm.16.4.731-733.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Martella V., Pratelli A., Greco G., Tempesta M., Ferrari M., Losio M.N., Buonavoglia C. Genomic characterization of porcine rotaviruses in Italy. Clin Diagn Lab Immunol. 2001;8:129–132. doi: 10.1128/CDLI.8.1.129-132.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Santos N., Lima R.C.C., Nozawa C.M., Linhares R.E., Gouvea V. Detection of porcine rotavirus type G9 and of a mixture of types G1 and G5 associated with Wa-like VP4 specifi city: Evidence for natural human-porcine genetic reassortment. J Clin Microbiol. 1999;37:2734–2736. doi: 10.1128/jcm.37.8.2734-2736.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Coluchi N., Munford V., Manzur J., Vazquez C., Escobar M., Weber E., Marmol P., Racz M.L. Detection, subgroup specificity, and genotype diversity of rotavirus strains in children with acute diarrhea in Paraguay. J Clin Microbiol. 2002;40:1709–1714. doi: 10.1128/JCM.40.5.1709-1714.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Varghese V., Das S., Singh N.B., Kojima K., Bhattacharya S.K., Krishnan T., Kobayashi N., Naik T.N. Molecular characterization of a human rotavirus reveals porcine characteristics in most of the genes including VP6 and NSP4. Arch Virol. 2004;146:155–172. doi: 10.1007/s00705-003-0199-1. [DOI] [PubMed] [Google Scholar]
- 12.Herring A.J., Inglis N.F., Ojeh C.K., Snodgrass D.R., Menzies J.D. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol. 1982;16:473–477. doi: 10.1128/jcm.16.3.473-477.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Sevensson L., Uhnoo I., Garndien M., Wadell G. Molecular epidemiology of rotavirus infection in Upsala, Sweden, 1981: Disappearance of a predominated electropherotype. J Clin Microbiol. 1986;18:101–111. doi: 10.1002/jmv.1890180202. [DOI] [PubMed] [Google Scholar]
- 14.Ojeh C.K., Snodgrass D.R., Herring A.J. Evidence for serotypic variation among bovine rotaviruses. Arch Virol. 1984;79:161–171. doi: 10.1007/BF01310809. [DOI] [PubMed] [Google Scholar]
- 15.Fijtman N.L., Barandeguy M.E., Cornaglia E.M., Schudel A.A. Variations and persistency of electropherotypes of bovine rotavirus field isolates. Arch Virol. 1987;96:275–281. doi: 10.1007/BF01320968. [DOI] [PubMed] [Google Scholar]
- 16.Suzuki Y., Sanekata T., Sato M., Tajima K., Matsuda Y., Nakagomi O. Relative frequencies of G (VP7) and P (VP4) serotypes determined by polymerase chain reaction assays among Japanese bovine rotaviruses isolated in cell culture. J Clin Microbiol. 1993;31:3046–3049. doi: 10.1128/jcm.31.11.3046-3049.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Ghosh S.K., Naik T.N. Detection of a large number of subgroup 1 human rotaviruses with a long RNA electropherotype. Arch Virol. 1989;105:119–127. doi: 10.1007/BF01311122. [DOI] [PubMed] [Google Scholar]
- 18.Sukumaran M., Gowda K., Maiya P.P., Srinivas T.P., Kumar M.S., Aijaz S., Reddy R.R., Padilla L., Greenberg, Rao C.D. Exclusive asymptomatic neonatal infections by human rotavirus strains having subgroup I specificity and “long” RNA electropherotype. Arch Virol. 1992;126:239–251. doi: 10.1007/BF01309698. [DOI] [PubMed] [Google Scholar]
- 19.Saravanan P., Ananthan S., Ananthasubramanian M. Rotavirus infection among infants and young children in Chennai, South India. Indian J Med Microbiol. 2004;22:212–221. [PubMed] [Google Scholar]
- 20.Brown D.W.G., Mathan M.M., Mathew M., Martin R., Beards G.M., Mathan V.I. Rotavirus epidemiology in Vellore, South India: Group, subgroup, serotype, and electropherotype. J Clin Microbiol. 1988;26:2410–2414. doi: 10.1128/jcm.26.11.2410-2414.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Broor S., Husain M., Chatterjee B., Chakraborty A., Seth P. Temporal variation in the distribution of rotavirus electropherotypes in Delhi, India. J Diarr Dis Res. 1993;11:14–18. [PubMed] [Google Scholar]
- 22.Sharma R. MVSc Thesis. Jabalpur: JNKVV; 2004. Isolation and molecular characterization of rotavirus associated with diarrhea in bovine calves. [Google Scholar]
- 23.Pongsuwanne Y., Taniguchi K., Choonthanom M., Chiwakul M., Susansook T., Saguanwongse S., Jayavasu C., Urasawa S. Subgroup and serotype distributions of human, bovine, and porcine rotavirus in Thailand. J Clin Microbiol. 1989;27:1956–1960. doi: 10.1128/jcm.27.9.1956-1960.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Theil K.W., McCloskey C.M. Molecular epidemiology and subgroup determination of bovine group A rotaviruses associated with diarrhea in dairy and beef calves. J Clin Microbiol. 1989;27:126–131. doi: 10.1128/jcm.27.1.126-131.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
