Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(9):2796–2800. doi: 10.1073/pnas.81.9.2796

Molecular cloning of region-specific chorion-encoding RNA sequences.

J C Regier, A K Hatzopoulos, A C Durot
PMCID: PMC345157  PMID: 6585828

Abstract

We have constructed a cDNA clone library from poly(A)+ RNA of very-late-period choriogenic silkmoth follicles. Clone DNAs that hybridize preferentially to RNA from the aeropyle crown region of the follicle (versus the flat region) were selected, and all could be placed in one of two homology groups. The two groups represent sequences encoding the very-late-period chorion proteins E1 and E2; this was established by hybrid-selected translation coupled with specific antibody precipitation. Regionalized synthesis of chorion proteins is restricted to the very late period, and its control can now be studied at the nucleic acid level.

Full text

PDF
2796

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Goldsmith M. R., Rattner E. C., Koehler M. M., Balikov S. R., Bock S. C. Two-dimensional electrophoresis of small-molecular-weight proteins. Anal Biochem. 1979 Oct 15;99(1):33–40. doi: 10.1016/0003-2697(79)90041-1. [DOI] [PubMed] [Google Scholar]
  2. Grunstein M., Wallis J. Colony hybridization. Methods Enzymol. 1979;68:379–389. doi: 10.1016/0076-6879(79)68027-8. [DOI] [PubMed] [Google Scholar]
  3. Jones C. W., Kafatos F. C. Linkage and evolutionary diversification of developmentally regulated multigene families: tandem arrays of the 401/18 chorion gene pair in silkmoths. Mol Cell Biol. 1981 Sep;1(9):814–828. doi: 10.1128/mcb.1.9.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jones C. W., Kafatos F. C. Structure, organization and evolution of developmentally regulated chorion genes in a silkmoth. Cell. 1980 Dec;22(3):855–867. doi: 10.1016/0092-8674(80)90562-0. [DOI] [PubMed] [Google Scholar]
  5. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  7. Lecanidou R., Eickbush T. H., Rodakis G. C., Kafatos F. C. Novel B family sequence from an early chorion cDNA library of Bombyx mori. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1955–1959. doi: 10.1073/pnas.80.7.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mazur G. D., Regier J. C., Kafatos F. C. The silkmoth chorion: morphogenesis of surface structures and its relation to synthesis of specific proteins. Dev Biol. 1980 May;76(2):305–321. doi: 10.1016/0012-1606(80)90381-4. [DOI] [PubMed] [Google Scholar]
  9. Paul M., Goldsmith M. R., Hunsley J. R., Kafatos F. C. Specific protein synthesis in cellular differentiation. Production of eggshell proteins by silkmoth follicular cells. J Cell Biol. 1972 Dec;55(3):653–680. doi: 10.1083/jcb.55.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paul M., Kafaots F. C. Specific protein synthesis in cellular differentiation. II. The program of protein synthetic changes during chorion formation by slikmoth follicles, and its implementation in organ culture. Dev Biol. 1975 Jan;42(1):141–159. doi: 10.1016/0012-1606(75)90320-6. [DOI] [PubMed] [Google Scholar]
  11. Regier J. C., Kafatos F. C., Hamodrakas S. J. Silkmoth chorion multigene families constitute a superfamily: comparison of C and B family sequences. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1043–1047. doi: 10.1073/pnas.80.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Regier J. C., Kafatos F. C., Kramer K. J., Heinrikson R. L., Keim P. S. Silkmoth chorion proteins. Their diversity, amino acid composition, and the NH-terminal sequence of one component. J Biol Chem. 1978 Feb 25;253(4):1305–1314. [PubMed] [Google Scholar]
  13. Regier J. C., Mazur G. D., Kafatos F. C., Paul M. Morphogenesis of silkmoth chorion: initial framework formation and its relation to synthesis of specific proteins. Dev Biol. 1982 Jul;92(1):159–174. doi: 10.1016/0012-1606(82)90160-9. [DOI] [PubMed] [Google Scholar]
  14. Regier J. C., Mazur G. D., Kafatos F. C. The silkmoth chorion: morphological and biochemical characterization of four surface regions. Dev Biol. 1980 May;76(2):286–304. doi: 10.1016/0012-1606(80)90380-2. [DOI] [PubMed] [Google Scholar]
  15. Rodakis G. C., Moschonas N. K., Regier J. C., Kafatos F. C. The B multigene family of chorion proteins in saturniid silkmoths. J Mol Evol. 1983;19(5):322–332. doi: 10.1007/BF02101635. [DOI] [PubMed] [Google Scholar]
  16. Sim G. K., Kafatos F. C., Jones C. W., Koehler M. D., Efstratiadis A., Maniatis T. Use of a cDNA library for studies on evolution and developmental expression of the chorion multigene families. Cell. 1979 Dec;18(4):1303–1316. doi: 10.1016/0092-8674(79)90241-1. [DOI] [PubMed] [Google Scholar]
  17. Thireos G., Kafatos F. C. Cell-free translation of silkmoth chorion mRNAs: identification of protein precursors and characterization of cloned DNAs by hybrid-selected translation. Dev Biol. 1980 Jul;78(1):36–46. doi: 10.1016/0012-1606(80)90316-4. [DOI] [PubMed] [Google Scholar]
  18. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES