Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(9):2929–2933. doi: 10.1073/pnas.81.9.2929

Halothane shortens acetylcholine receptor channel kinetics without affecting conductance.

J Lechleiter, R Gruener
PMCID: PMC345187  PMID: 6326154

Abstract

The extracellular patch-clamp technique was used to examine how halothane, a general anesthetic, affects the properties of single nicotinic acetylcholine receptor channels of embryonic Xenopus skeletal muscle cells grown in culture. Under control conditions, single-channel events showed a bimodal distribution on the basis of current amplitudes. This distribution was maintained during exposure to halothane and its washout. In addition, the mean current value of the low-and high-amplitude channels was unaffected by the presence of the anesthetic at clinically relevant concentrations. In contrast, halothane shortened the burst durations of both channel types in a concentration-dependent manner. This shortening of burst durations may be an expression of the more rapid relaxation of the channel protein to the nonconducting state, possibly due to the disordering effect of the anesthetic on membrane lipids in which the receptor protein is embedded. This functional change, in the behavior of the synaptic receptor, provides further direct information on the mode of action of general anesthetics.

Full text

PDF
2933

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanck T. J., Thompson M. Measurement of halothane by ultraviolet spectroscopy. Anesth Analg. 1980 Jul;59(7):481–483. [PubMed] [Google Scholar]
  2. Colquhoun D., Sakmann B. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature. 1981 Dec 3;294(5840):464–466. doi: 10.1038/294464a0. [DOI] [PubMed] [Google Scholar]
  3. Dionne V. E., Leibowitz M. D. Acetylcholine receptor kinetics. A description from single-channel currents at snake neuromuscular junctions. Biophys J. 1982 Sep;39(3):253–261. doi: 10.1016/S0006-3495(82)84515-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fernández J. M., Bezanilla F., Taylor R. E. Effect of chloroform on charge movement in the nerve membrane. Nature. 1982 May 13;297(5862):150–152. doi: 10.1038/297150a0. [DOI] [PubMed] [Google Scholar]
  5. Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
  6. Gage P. W., Hamill O. P. Effects of several inhalation anaesthetics on the kinetics of postsynaptic conductance changes in mouse diaphragm. Br J Pharmacol. 1976 Jun;57(2):263–272. doi: 10.1111/j.1476-5381.1976.tb07476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gissen A. J., Karis J. H., Nastuk W. L. Effect of halothane on neuromuscular transmission. JAMA. 1966 Sep 5;197(10):770–774. [PubMed] [Google Scholar]
  8. Gruener R., Kidokoro Y. Acetylcholine sensitivity of innervated and noninnervated Xenopus muscle cells in culture. Dev Biol. 1982 May;91(1):86–92. doi: 10.1016/0012-1606(82)90011-2. [DOI] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Haydon D. A., Urban B. W. The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol. 1983 Aug;341:429–439. doi: 10.1113/jphysiol.1983.sp014814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson M. B., Lecar H., Mathers D. A., Barker J. L. Single channel currents activated by gamma-aminobutyric acid, muscimol, and (-)-pentobarbital in cultured mouse spinal neurons. J Neurosci. 1982 Jul;2(7):889–894. doi: 10.1523/JNEUROSCI.02-07-00889.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Judge S. E. Effect of general anaesthetics on synaptic ion channels. Br J Anaesth. 1983 Mar;55(3):191–200. doi: 10.1093/bja/55.3.191. [DOI] [PubMed] [Google Scholar]
  13. LARRABEE M. G., POSTERNAK J. M. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J Neurophysiol. 1952 Mar;15(2):91–114. doi: 10.1152/jn.1952.15.2.91. [DOI] [PubMed] [Google Scholar]
  14. Landau E. M., Richter J., Cohen S. The mean conductance and open-time of the acetylcholine receptor channels can be independently modified by some anesthetic and convulsant ethers. Mol Pharmacol. 1979 Nov;16(3):1075–1083. [PubMed] [Google Scholar]
  15. Lenaz G., Curatola G., Mazzanti L., Bertoli E., Pastuszko A. Spin label studies on the effect of anesthetics in synaptic membranes. J Neurochem. 1979 Jun;32(6):1689–1695. doi: 10.1111/j.1471-4159.1979.tb02280.x. [DOI] [PubMed] [Google Scholar]
  16. Lieb W. R., Kovalycsik M., Mendelsohn R. Do clinical levels of general anaesthetics affect lipid bilayers? Evidence from Raman scattering. Biochim Biophys Acta. 1982 Jun 14;688(2):388–398. doi: 10.1016/0005-2736(82)90350-9. [DOI] [PubMed] [Google Scholar]
  17. Lunch C., 3rd, Vogel S., Pratila M. G., Sperelakis N. Enflurane depression of myocardial slow action potentials. J Pharmacol Exp Ther. 1982 Aug;222(2):405–409. [PubMed] [Google Scholar]
  18. Maleque M. A., Warnick J. E., Albuquerque E. X. The mechanism and site of action of ketamine on skeletal muscle. J Pharmacol Exp Ther. 1981 Dec;219(3):638–645. [PubMed] [Google Scholar]
  19. Metcalfe J. C., Seeman P., Burgen A. S. The proton relaxation of benzyl alcohol in erythrocyte membranes. Mol Pharmacol. 1968 Jan;4(1):87–95. [PubMed] [Google Scholar]
  20. Miller K. W., Paton W. D., Smith R. A., Smith E. B. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol. 1973 Mar;9(2):131–143. [PubMed] [Google Scholar]
  21. Mountcastle D. B., Biltonen R. L., Halsey M. J. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4906–4910. doi: 10.1073/pnas.75.10.4906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neher E., Sakmann B., Steinbach J. H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 1978 Jul 18;375(2):219–228. doi: 10.1007/BF00584247. [DOI] [PubMed] [Google Scholar]
  23. Nicoll R. A., Madison D. V. General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science. 1982 Sep 10;217(4564):1055–1057. doi: 10.1126/science.7112112. [DOI] [PubMed] [Google Scholar]
  24. Pang K. Y., Chang T. L., Miller K. W. On the coupling between anesthetic induced membrane fluidization and cation permeability in lipid vesicles. Mol Pharmacol. 1979 May;15(3):729–738. [PubMed] [Google Scholar]
  25. Roth S. H. Mechanisms of anaesthesia: a review. Can Anaesth Soc J. 1980 Sep;27(5):433–439. doi: 10.1007/BF03007039. [DOI] [PubMed] [Google Scholar]
  26. Sakmann B., Patlak J., Neher E. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature. 1980 Jul 3;286(5768):71–73. doi: 10.1038/286071a0. [DOI] [PubMed] [Google Scholar]
  27. Torda T. A., Gage P. W. Postsynaptic effect of i.v. anaesthetic agents at the neuromuscular junction. Br J Anaesth. 1977 Aug;49(8):771–776. doi: 10.1093/bja/49.8.771. [DOI] [PubMed] [Google Scholar]
  28. Trudell J. R., Hubbell W. L., Cohen E. N. The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):321–327. doi: 10.1016/0005-2736(73)90485-9. [DOI] [PubMed] [Google Scholar]
  29. Waud B. E., Waud D. R. The effects of diethyl ether, enflurane, and isoflurane at the neuromuscular junction. Anesthesiology. 1975 Mar;42(3):275–280. doi: 10.1097/00000542-197503000-00007. [DOI] [PubMed] [Google Scholar]
  30. Young A. P., Brown F. F., Halsey M. J., Sigman D. S. Volatile anesthetic facilitation of in vitro desensitization of membrane-bound acetylcholine receptor from Torpedo californica. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4563–4567. doi: 10.1073/pnas.75.9.4563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES