Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(10):3010–3013. doi: 10.1073/pnas.81.10.3010

Occurrence of selenium-containing tRNAs in mouse leukemia cells.

W M Ching
PMCID: PMC345210  PMID: 6587339

Abstract

Selenium incorporation into the polynucleotide structures of tRNAs has been documented in several microorganisms. In the present study, selenium-containing species were isolated from bulk tRNA preparations from 75Se-labeled mouse leukemia cells. The major 75Se-labeled species was similar in size and exhibited the same sensitivity to ribonuclease as did Escherichia coli tRNAs. The chromatographic properties of the intact major selenium-containing tRNA species indicated it to be very hydrophobic in character. The selenium component that is unstable at neutral-to-alkaline pH but is relatively stable at acid pH is not an esterified selenoamino acid. HPLC analysis of enzymic digests of the major selenium-containing species detected selenium-containing hydrophobic products (probably selenonucleosides ). These properties strongly suggest that the selenium in the mouse leukemia-cell tRNAs is present in the form of a selenium-modified nucleoside.

Full text

PDF
3011

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Tsang T. H., Buck M., Christman M. F. The leader mRNA of the histidine attenuator region resembles tRNAHis: possible general regulatory implications. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5240–5242. doi: 10.1073/pnas.80.17.5240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
  3. Chen C. S., Stadtman T. C. Selenium-containing tRNAs from Clostridium sticklandii: cochromatography of one species with L-prolyl-tRNA. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1403–1407. doi: 10.1073/pnas.77.3.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ching W. M., Stadtman T. C. Selenium-containing tRNAGlu from Clostridium sticklandii: correlation of aminoacylation with selenium content. Proc Natl Acad Sci U S A. 1982 Jan;79(2):374–377. doi: 10.1073/pnas.79.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ching W. M., Wittwer A. J., Tsai L., Stadtman T. C. Distribution of two selenonucleosides among the selenium-containing tRNAs from Methanococcus vannielii. Proc Natl Acad Sci U S A. 1984 Jan;81(1):57–60. doi: 10.1073/pnas.81.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eliceiri G. L. Incorporation of 35S into mammalian 4-S RNA. Biochim Biophys Acta. 1970;209(2):387–395. doi: 10.1016/0005-2787(70)90736-7. [DOI] [PubMed] [Google Scholar]
  7. Haenni A. L., Joshi S., Chapeville F. tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol. 1982;27:85–104. doi: 10.1016/s0079-6603(08)60598-x. [DOI] [PubMed] [Google Scholar]
  8. Janzer J. J., Raney J. P., McLennan B. D. The transfer RNA of certain Enterobacteriacae contain 2-methylthiozeatin riboside (ms2io6A) an isopentenyl adenosine derivative. Nucleic Acids Res. 1982 Sep 25;10(18):5663–5672. doi: 10.1093/nar/10.18.5663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
  10. Kien C. L., Ganther H. E. Manifestations of chronic selenium deficiency in a child receiving total parenteral nutrition. Am J Clin Nutr. 1983 Feb;37(2):319–328. doi: 10.1093/ajcn/37.2.319. [DOI] [PubMed] [Google Scholar]
  11. Raba M., Limburg K., Burghagen M., Katze J. R., Simsek M., Heckman J. E., Rajbhandary U. L., Gross H. J. Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur J Biochem. 1979 Jun;97(1):305–318. doi: 10.1111/j.1432-1033.1979.tb13115.x. [DOI] [PubMed] [Google Scholar]
  12. Tsang T. H., Buck M., Ames B. N. Sequence specificity of tRNA-modifying enzymes. An analysis of 258 tRNA sequences. Biochim Biophys Acta. 1983 Nov 17;741(2):180–196. doi: 10.1016/0167-4781(83)90058-1. [DOI] [PubMed] [Google Scholar]
  13. Wittwer A. J. Specific incorporation of selenium into lysine- and glutamate- accepting tRNAs from Escherichia coli. J Biol Chem. 1983 Jul 25;258(14):8637–8641. [PubMed] [Google Scholar]
  14. Yamada Y., Ishikura H. The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in lysine tRNA1 from Bacillus subtilis. J Biochem. 1981 May;89(5):1589–1591. doi: 10.1093/oxfordjournals.jbchem.a133353. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES