Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2008 Dec 20;23(4):307–327. doi: 10.1007/s12291-008-0071-x

The biochemical womb of schizophrenia: A review

N Gaur 3, S Gautam 1,3,, M Gaur 1,3, P Sharma 2,3, G Dadheech 3, S Mishra 3
PMCID: PMC3453132  PMID: 23105779

Abstract

The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a “dream come true” for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.

Key Words: Schizophrenia, Neurobiology, Biochemical markers

Full Text

The Full Text of this article is available as a PDF (551.1 KB).

References

  • 1.Jablensky A., Sartorius N., Ernberg G., Anker M., Korten A., Cooper J.E., Day R., Bertelsen A. Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol Med Monogr Suppl. 1992;20:1–97. doi: 10.1017/s0264180100000904. [DOI] [PubMed] [Google Scholar]
  • 2.Rice D.P. The economic impact of schizophrenia. J Clin Psychiatry. 1999;60(Suppl1):4–6. [PubMed] [Google Scholar]
  • 3.Lewis D.A., Lieberman J.A. Catching up on schizophrenia: natural history and neurobiology. Neuron. 2000;28:325–334. doi: 10.1016/S0896-6273(00)00111-2. [DOI] [PubMed] [Google Scholar]
  • 4.Andreasen N.C. Schizophrenia: The fundamental questions. Brain Res Brain Res Rev. 2000;31:106–112. doi: 10.1016/S0165-0173(99)00027-2. [DOI] [PubMed] [Google Scholar]
  • 5.Miyamoto S., LaMantia A.S., Duncan G.E., Sullivan P., Gilmore J.H., Lieberman J.A. Recent advances in the neurobiology of schizophrenia. Mol Interv. 2003;3(1):27–39. doi: 10.1124/mi.3.1.27. [DOI] [PubMed] [Google Scholar]
  • 6.Nudmamud-Thanoi S. Neurochemical abnormalities in schizophrenia. J Naresuan Univ. 2005;13:61–72. [Google Scholar]
  • 7.Guillin O., Laruelle M. Neurobiology of Dopamine in Schizophrenia. Cellscience Reviews. 2005;2:79–107. doi: 10.1016/S0074-7742(06)78001-1. [DOI] [PubMed] [Google Scholar]
  • 8.Snyder S.H., Banerjee S.P., Yamamura H.I., Greenberg D. Drugs, neurotransmitters, and schizophrenia. Science. 1974;184:1243–1253. doi: 10.1126/science.184.4143.1243. [DOI] [PubMed] [Google Scholar]
  • 9.Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol. 1988;1:179–186. doi: 10.1016/0893-133X(88)90012-7. [DOI] [PubMed] [Google Scholar]
  • 10.Seeman P., Lee T. Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neutrons. Science. 1975;188:1217–1219. doi: 10.1126/science.1145194. [DOI] [PubMed] [Google Scholar]
  • 11.Weinberger D.R. Implications of the normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–669. doi: 10.1001/archpsyc.1987.01800190080012. [DOI] [PubMed] [Google Scholar]
  • 12.Duncan G.E., Sheitman B.B., Lieberman J.A. An integrated view of pathophysiological models of schizophrenia. Brain Res Brain Res Rev. 1999;29:250–264. doi: 10.1016/S0165-0173(99)00002-8. [DOI] [PubMed] [Google Scholar]
  • 13.Lembreghts M., Ansseau M. Biological markers in schizophrenia. Encephale. 1993;19:501–523. [PubMed] [Google Scholar]
  • 14.Reynolds G.P., Czudek C. New approaches to the drug treatment of schizophrenia. Adv Pharmacol. 1995;32:461–503. doi: 10.1016/S1054-3589(08)61020-0. [DOI] [PubMed] [Google Scholar]
  • 15.Farde L., Nordstrom A.L., Wiesel F.A., Pauli S., Halldin C., Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–544. doi: 10.1001/archpsyc.1992.01820070032005. [DOI] [PubMed] [Google Scholar]
  • 16.Bacopoulos N.G., Hattox S.E., Roth R.H. 3,4-dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indicators of central dopaminergic activity. Eur J Pharmacol. 1979;56:225–236. doi: 10.1016/0014-2999(79)90175-4. [DOI] [PubMed] [Google Scholar]
  • 17.Lambert G.W., Eisenhofer G., Jennings G.L., Esler M.D. Regional homovanillic acid production in humans. Life Sci. 1993;53:63–75. doi: 10.1016/0024-3205(93)90612-7. [DOI] [PubMed] [Google Scholar]
  • 18.Maas J.W., Contreras S.A., Miller A.L., Berman N., Bowden C.L., Javors M.A., Seleshi E., Weintraub S. Studies of catecholamine metabolism in schizophrenia/psychosis-I. Neurospsychopharmacol. 1993;8:97–109. doi: 10.1038/npp.1993.11. [DOI] [PubMed] [Google Scholar]
  • 19.Mazure C.M., Nelson J.C., Jatlow P.I., Bowers M.B. Plasma free homovanillic acid (HVA) as a predictor of clinical response in acute psychosis. Biol Psychiatry. 1991;30:475–482. doi: 10.1016/0006-3223(91)90309-A. [DOI] [PubMed] [Google Scholar]
  • 20.Sharma R.P., Javaid J.I., Janicak P.G., Comaty J., Davis J.M. Plasma and CSF HVA before and after pharmacological treatment. Psychiatr Res. 1989;28:97–104. doi: 10.1016/0165-1781(89)90201-1. [DOI] [PubMed] [Google Scholar]
  • 21.Soares J.C., Innis R.B. Neurochemical brain imaging investigations of schizophrenia. Biol Psychiatry. 1999;46:600–615. doi: 10.1016/S0006-3223(99)00015-3. [DOI] [PubMed] [Google Scholar]
  • 22.Amin F., Davidson M., Kahn R.S., Schmeidler J., Stern R., Knott P.J., Apter S. Assessment of the central dopaminergic index of plasma HVA in schizophrenia. Schizophr Bull. 1995;21:53–66. doi: 10.1093/schbul/21.1.53. [DOI] [PubMed] [Google Scholar]
  • 23.Kelley M.E., Yao J.K., Kammen D.P. Plasma catecholamine metabolites as markers for psychosis and antipsychotic response in schizophrenia. Neuropsychopharmacol. 1999;20:603–611. doi: 10.1016/S0893-133X(98)00094-3. [DOI] [PubMed] [Google Scholar]
  • 24.Wong D.F., Wagner H.N., Jr, Tune L.E., Dannals R.F., Pearlson G.D., Links J.M., et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science. 1986;234:1558–1563. doi: 10.1126/science.2878495. [DOI] [PubMed] [Google Scholar]
  • 25.Nordstrom A.L., Farde L., Eriksson L., Halldin C. No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11 C]N -methylspiperone. Psychiatry Res. 1995;61:67–83. doi: 10.1016/0925-4927(95)02732-D. [DOI] [PubMed] [Google Scholar]
  • 26.Angst J. Psychoses in disulfiram (anatabus) treatment: review of literature and etiology. Schweiz Med Wochenschr. 1956;86(46):1304–1306. [PubMed] [Google Scholar]
  • 27.Laruelle M., Abi-Dargham A., Gil R., Kegeles L., Innis R.B. Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry. 1999;46:56–72. doi: 10.1016/S0006-3223(99)00067-0. [DOI] [PubMed] [Google Scholar]
  • 28.Laruelle M. The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev. 2000;31:371–384. doi: 10.1016/S0165-0173(99)00054-5. [DOI] [PubMed] [Google Scholar]
  • 29.Tamminga C.A., Lahti R.A., Lahti A.C., Carlsson A. In: Partial dopamine agonists in the treatment of psychotic illness. Current Issues in the Psychopharmacology of Schizophrenia. Breier A., Tran P.V., Herrera J.M., Tollefson G.D., Bymaster F.P., editors. Philadelphia: Lippincott, Williams & Wilkins Healthcare; 2001. pp. 279–288. [Google Scholar]
  • 30.Carlsson A., Waters N., Waters S., Carlsson M.L. Network interactions in schizophrenia: therapeutic implications. Brain Res Brain Res Rev. 2000;31:342–349. doi: 10.1016/S0165-0173(99)00050-8. [DOI] [PubMed] [Google Scholar]
  • 31.Lawler C.P., Prioleau C., Lewis M.M., Mak C., Jiang D., Schetz J.A., Gonzalez A.M., Sibley D.R., Mailman R.B. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacol. 1999;20:612–627. doi: 10.1016/S0893-133X(98)00099-2. [DOI] [PubMed] [Google Scholar]
  • 32.Okubo Y., Suhara T., Suzuki K., Kobayashi K., Inoue O., Terasaki O., Someya Y., Sassa T., Sudo Y., Matsushima E., Iyo M., Tateno Y., Toru M. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature. 1997;385:634–636. doi: 10.1038/385634a0. [DOI] [PubMed] [Google Scholar]
  • 33.Gurevich E.V., Bordelon Y., Shapiro R.M., Arnold S.E., Gur R.E., Joyce J.N. Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia: a postmortem study. Arch Gen Psychiatry. 1997;54:225–232. doi: 10.1001/archpsyc.1997.01830150047009. [DOI] [PubMed] [Google Scholar]
  • 34.Seeman P., Guan H.C., Tol H.H. Dopamine D4 receptors elevated in schizophrenia. Nature. 1993;365:441–445. doi: 10.1038/365441a0. [DOI] [PubMed] [Google Scholar]
  • 35.Harrison P.J. The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain. 1999;122:593–624. doi: 10.1093/brain/122.4.593. [DOI] [PubMed] [Google Scholar]
  • 36.Weinberger D.R., Egan M.F., Bertolino A., Callicott J.H., Mattay V.S., Lipska B.K., Berman K.F., Goldberg T.E. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry. 2001;50:825–844. doi: 10.1016/S0006-3223(01)01252-5. [DOI] [PubMed] [Google Scholar]
  • 37.Liljequist R., Haapalinna A., Ahlander M., Li Y.H., Mannisto P.T. Catechol-O-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res. 1997;82:195–202. doi: 10.1016/S0166-4328(97)80989-8. [DOI] [PubMed] [Google Scholar]
  • 38.Gasparini M., Fabrizio E., Bonifati V., Meco G. Cognitive improvement during tolcapone treatment in Parkinson’s disease. J Neural Transm. 1997;104:887–894. doi: 10.1007/BF01285556. [DOI] [PubMed] [Google Scholar]
  • 39.Gogos J.A., Morgan M., Luine V., Santha M., Ogawa S., Pfaff D., Karayiorgou M. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA. 1998;95:9991–9996. doi: 10.1073/pnas.95.17.9991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Egan M.F., Goldberg T.E., Kolachana B.S., Callicott J.H., Mazzanti C.M., Straub R.E., Goldman D., Weinberger D.R. Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98:6917–6922. doi: 10.1073/pnas.111134598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Williams H.J., Glaser B., Williams N.M., Norton N., Zammit S., Macgregor S., Kirov G.K., Owen M.J., O’Donovan M.C. No association between schizophrenia and polymorphisms in COMT in two large samples. Am J Psychiatry. 2005;162:1736–1738. doi: 10.1176/appi.ajp.162.9.1736. [DOI] [PubMed] [Google Scholar]
  • 42.Williams H.J., Owen M.J., O’Donovan M.C. Is COMT a Susceptibility Gene for Schizophrenia? Schizophr Bull. 2007;33:635–641. doi: 10.1093/schbul/sbm019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Lieberman J.A., Mailman R.B., Duncan G., Sikich L., Chakos M., Nichols D.E., Kraus J.E. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry. 1998;44:1099–1117. doi: 10.1016/S0006-3223(98)00187-5. [DOI] [PubMed] [Google Scholar]
  • 44.Hoyer D. Functional correlates to 5-HT1 recognition sites. J Recept Res. 1988;8:59–81. doi: 10.3109/10799898809048978. [DOI] [PubMed] [Google Scholar]
  • 45.Harrison P.J. Neurochemical alterations in schizophrenia affecting the putative receptor targets of atypical antipsychotics. Focus on dopamine (D1, D3, D4) and 5-HT2a receptors. Br J Psychiatry Suppl. 1999;38:12–22. [PubMed] [Google Scholar]
  • 46.Kahn R.S., Siever L., Davidson M., Greenwald C., Moore C. Haloperidol and clozapine treatment and their effect on mchlorophenylpiperazine-mediated responses in schizophrenia: implications for the mechanism of action of clozapine. Psychopharmacol. 1993;112:S90–S94. doi: 10.1007/BF02245012. [DOI] [PubMed] [Google Scholar]
  • 47.Lerer B., Ran A., Blacker M., Silver H., Weller M.P., Drummer D., Ebstein B., Calev A. Neuroendocrine responses in chronic schizophrenia. Evidence for a serotonergic dysfunction. Schizophr Res. 1988;1:405–410. doi: 10.1016/0920-9964(88)90022-9. [DOI] [PubMed] [Google Scholar]
  • 48.Maes M., Meltzer H.Y. Effects of meta-chlorophenylpiperazine on neuroendocrine and behavioral responses in male schizpherenic patients and normal volunteers. Psychiatry Res. 1996;64:147–169. doi: 10.1016/S0165-1781(96)02917-4. [DOI] [PubMed] [Google Scholar]
  • 49.Marshall B.D., Jr, Glynn S.M., Midha K.K., Hubbard J.W., Bowen L.L., Banzett L., Mintz J., Liberman R.P. Adverse effects of fenfluramine in treatment refractory schizophrenia. J Clin Psychopharmacol. 1989;9:110–115. doi: 10.1097/00004714-198904000-00007. [DOI] [PubMed] [Google Scholar]
  • 50.Bryan L. Roth, Herbert Y. Meltzer. The Role of Serotonin in schizophrenia. 2000. http://www.acnp.org/g4/GN401000117/CH115.html
  • 51.Govitrapong P., Chagkutip J., Turakitwanakan W., Srikiatkhachorn A. Platelet 5-HT(2A) receptors in schizophrenic patients with and without neuroleptic treatment. Psychiatry Res. 2000;96:41–50. doi: 10.1016/S0165-1781(00)00191-8. [DOI] [PubMed] [Google Scholar]
  • 52.Govitrapong P., Mukda S., Turakitwanakan W., Dumrongphol H., Chindaduangratn C., Sanvarinda Y. Platelet serotonin transporter in schizophrenic patients with and without neuroleptic treatment. Neurochem Int. 2002;41:209–216. doi: 10.1016/S0197-0186(02)00024-4. [DOI] [PubMed] [Google Scholar]
  • 53.Meltzer H.Y., Li Z., Kaneda Y., Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:1159–1172. doi: 10.1016/j.pnpbp.2003.09.010. [DOI] [PubMed] [Google Scholar]
  • 54.Meltzer H.Y. The Role of Serotonin in Antipsychotic Drug Action. Neuropsychopharmacol. 1999;21:106S–115S. doi: 10.1016/S0893-133X(99)00046-9. [DOI] [PubMed] [Google Scholar]
  • 55.Glennon R.A. Do classical hallucinogens act as 5-HT2 agonists or antagonistss? Neuropsychopharmacol. 1990;3:509–517. [PubMed] [Google Scholar]
  • 56.Meltzer H.Y., Kennedy J., Dai J., Parsa M., Riley D. Plasma clozapine levels and the treatment of L-DOPA-induced psychosis in Parkinson’s disease: a high potency effect of clozapine. Neuropsychopharmacol. 1995;12:39–45. doi: 10.1016/0893-133X(94)00060-D. [DOI] [PubMed] [Google Scholar]
  • 57.Mita T., Hanada S., Nishino N., Kuno T., Nakai H., Yamadori T., Mizoi Y., Tanaka C. Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics. Biol Psychiatry. 1986;21:1407–1414. doi: 10.1016/0006-3223(86)90332-X. [DOI] [PubMed] [Google Scholar]
  • 58.Arora R.C., Meltzer H.Y. Serotonin2 (5HT2) receptor binding in the frontal cortex of schizophrenic patients. J Neural Transm. 1991;85:19–29. doi: 10.1007/BF01244654. [DOI] [PubMed] [Google Scholar]
  • 59.Laruelle M., Abi-Dargham A., Casanova M.F., Toti R., Weinberger D.R., Kleinman J.E. Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. Arch Gen Psychiatry. 1993;50:810–818. doi: 10.1001/archpsyc.1993.01820220066007. [DOI] [PubMed] [Google Scholar]
  • 60.Bleich A., Brown S.L., Kahn R., Praag H.M. The role of serotonin in schizophrenia. Schizophr Bull. 1988;14:297–315. doi: 10.1093/schbul/14.2.297. [DOI] [PubMed] [Google Scholar]
  • 61.Hashimoto T., Nishino N., Nakai H., Tanaka C. Increase in serotonin 5-HT2A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia. Life Sci. 1991;48:355–363. doi: 10.1016/0024-3205(91)90556-Q. [DOI] [PubMed] [Google Scholar]
  • 62.Simpson M.D.C., Lubman D.I., Slater P., Deakin J.F.W. Autoradiography with [3H]8-OH-DPAT reveals increases in 5-HT1A receptors in ventral prefrontal cortex in schizophrenia. Biol Psychiatry. 1996;39:919–928. doi: 10.1016/0006-3223(95)00026-7. [DOI] [PubMed] [Google Scholar]
  • 63.Abi-Dargham A., Laruell M., Aghajanian G.K., Charney D., Krystal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. Neuropsychiatr Clin Neurosci. 1997;9:1–17. doi: 10.1176/jnp.9.1.1. [DOI] [PubMed] [Google Scholar]
  • 64.Ferre S., Cortes R., Artigas F. Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci. 1994;14:4839–4846. doi: 10.1523/JNEUROSCI.14-08-04839.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Hicks P.B. The effect of serotonergic agents on haloperidolinduced catalepsy. Life Sci. 1990;47:1609–1615. doi: 10.1016/0024-3205(90)90365-X. [DOI] [PubMed] [Google Scholar]
  • 66.Kelland M.D., Freeman A.S., Chiodo L.A. Serotonergic afferent regulation of the basic physiology and pharmacological responsiveness of nigrostriatal dopamine neurons. J Pharmacol Exp Ther. 1990;253:803–811. [PubMed] [Google Scholar]
  • 67.Pilowsky L.S., costa D.C., Ell P.J., Verhoeff N.P., Murray R.M., Kerwin R.W. D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. Br J Psychiatry. 1994;164:16–26. doi: 10.1192/bjp.164.1.16. [DOI] [PubMed] [Google Scholar]
  • 68.Svensson T.H., Mathe J.M., Andersson J.L., Nomikos G.G., Hildebrand B.E., Marcus M. Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT2 receptor and alpha 1- andrenoceptor antagonism. J Clin Psychopharmacol. 1995;15:11S–18S. doi: 10.1097/00004714-199502001-00003. [DOI] [PubMed] [Google Scholar]
  • 69.Choi D.W., Koh J.Y., Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988;8:185–196. doi: 10.1523/JNEUROSCI.08-01-00185.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Court J.A., Perry E.K., Johnson M., Piggott M.A., Kerwin J.A., Perry R.H., Ince P.G. Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. Brain Res Dev Brain Res. 1993;74:73–82. doi: 10.1016/0165-3806(93)90085-O. [DOI] [PubMed] [Google Scholar]
  • 71.Coyle J.T., Puttfarcken P. Oxidative stress, glutamate and neurodegenerative disorders. Science. 1993;262:689–695. doi: 10.1126/science.7901908. [DOI] [PubMed] [Google Scholar]
  • 72.Egan M.F., Weinberger D.R. Neurobiology of schizophrenia. Curr Opin Neurobiol. 1997;7:701–707. doi: 10.1016/S0959-4388(97)80092-X. [DOI] [PubMed] [Google Scholar]
  • 73.Goff D.C., Wine L. Glutamate in schizophrenia: clinical and research implications. Schizophr Res. 1997;27:157–168. doi: 10.1016/S0920-9964(97)00079-0. [DOI] [PubMed] [Google Scholar]
  • 74.Grace A.A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41:1–24. doi: 10.1016/0306-4522(91)90196-U. [DOI] [PubMed] [Google Scholar]
  • 75.Huntley G.W., Vickers J.C., Morrison J.H. Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease. Trends Neurosci. 1994;17:536–543. doi: 10.1016/0166-2236(94)90158-9. [DOI] [PubMed] [Google Scholar]
  • 76.Goff D.C., Coyle J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry. 2001;158:1367–1377. doi: 10.1176/appi.ajp.158.9.1367. [DOI] [PubMed] [Google Scholar]
  • 77.Deakin J.F., Slater P., Simpson M.D., Gilchrist A.C., Skan W.J., Royston M.C., Reynolds G.P., Cross A.J. Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem. 1989;52:1781–1786. doi: 10.1111/j.1471-4159.1989.tb07257.x. [DOI] [PubMed] [Google Scholar]
  • 78.Nishikawa T., Takashima M., Toru M. Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett. 1983;40:245–250. doi: 10.1016/0304-3940(83)90046-0. [DOI] [PubMed] [Google Scholar]
  • 79.Toru M., Watanabe S., Shibuya H., Nishikawa T., Noda K., Mitsushio H., et al. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand. 1988;78:121–137. doi: 10.1111/j.1600-0447.1988.tb06312.x. [DOI] [PubMed] [Google Scholar]
  • 80.Harrison P.J., McLaughlin D., Kerwin R.W. Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet. 1991;337:450–452. doi: 10.1016/0140-6736(91)93392-M. [DOI] [PubMed] [Google Scholar]
  • 81.Humphries C., Mortimer A., Hirsch S., Belleroche J. NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. Neuroreport. 1996;7:2051–2055. doi: 10.1097/00001756-199608120-00040. [DOI] [PubMed] [Google Scholar]
  • 82.Kristensen J.D., Svensson B., Gordh T. The NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration in humans. Pain. 1992;51:249–253. doi: 10.1016/0304-3959(92)90266-E. [DOI] [PubMed] [Google Scholar]
  • 83.Abi-Saab W.M., D’souza D.C., Madonick S.H., Krystal J.H. In: Targeting the glutamate system. Current Issues in the Psychopharmacology of Schizophrenia. Breier A., Tran P.V., Herrera J.M., Tollefson G.D., Bymaster F.P., editors. Philadelphia: Lippincott, Williams & Wilkins Healthcare; 2001. pp. 304–332. [Google Scholar]
  • 84.Mohn A.R., Gainetdinov R.R., Caron M.G., Koller B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98:427–436. doi: 10.1016/S0092-8674(00)81972-8. [DOI] [PubMed] [Google Scholar]
  • 85.Coyle J.T. The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry. 1996;3:241–253. doi: 10.3109/10673229609017192. [DOI] [PubMed] [Google Scholar]
  • 86.Javitt D.C., Zukin S.R. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148:1301–1308. doi: 10.1176/ajp.148.10.1301. [DOI] [PubMed] [Google Scholar]
  • 87.Jentsch J.D., Roth R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacol. 1999;20:201–225. doi: 10.1016/S0893-133X(98)00060-8. [DOI] [PubMed] [Google Scholar]
  • 88.Duncan G.E., Miyamoto S., Gu H., Lieberman J.A., Koller B.H., Snouwaert J.N. Alterations in regional brain metabolism in genetic and pharmacological models of reduced NMDA receptor function. Brain Res. 2002;951:166–176. doi: 10.1016/S0006-8993(02)03156-6. [DOI] [PubMed] [Google Scholar]
  • 89.Miyamoto S., Mailman R.B., Lieberman J.A., Duncan G.E. Blunted brain metabolic response to ketamine in mice lacking D1A dopamine receptors. Brain Res. 2001;894:167–180. doi: 10.1016/S0006-8993(01)01991-6. [DOI] [PubMed] [Google Scholar]
  • 90.Vasiliadis H., Elie R., Dewar K.M. Interaction between dopamine and glutamate receptors following treatment with NMDA receptor antagonists. Eur J Pharmacol. 1999;386:155–163. doi: 10.1016/S0014-2999(99)00770-0. [DOI] [PubMed] [Google Scholar]
  • 91.Zheng P., Zhang X.X., Bunney B.S., Shi W.X. Opposite modulation of cortical N -methyl-D -aspartate receptormediated responses by low and high concentrations of dopamine. Neuroscience. 1999;91:527–535. doi: 10.1016/S0306-4522(98)00604-6. [DOI] [PubMed] [Google Scholar]
  • 92.Breier A., Adler C.M., Weisenfeld N., Su T.P., Elman I., Picken L., Malhortra A.K., Pickar D. Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse. 1998;29:142–147. doi: 10.1002/(SICI)1098-2396(199806)29:2<142::AID-SYN5>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  • 93.Vollenweider F.X., Vontobel P., Oye I., Hell D., Leenders K.L. Effects of S-ketamine on striatal dopamine: A [11 C]-raclopride PET study of a model psychosis in humans. J Psychiatr Res. 2000;34:35–43. doi: 10.1016/S0022-3956(99)00031-X. [DOI] [PubMed] [Google Scholar]
  • 94.Kapur S., Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors: implications for models of schizophrenia. Mol Psychiatry. 2002;7:837–844. doi: 10.1038/sj.mp.4001093. [DOI] [PubMed] [Google Scholar]
  • 95.Moghaddam B., Adams B., Verman A., Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–2927. doi: 10.1523/JNEUROSCI.17-08-02921.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Ohnuma T., Augood S.J., Arai H., McKenna P.J., Emson P.C. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res. 1998;56:207–217. doi: 10.1016/S0169-328X(98)00063-1. [DOI] [PubMed] [Google Scholar]
  • 97.McCullumsmith R.E., Meador-Woodruff J.H. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder and major depressive disorder. Neuropsychopharmacol. 2002;26:368–375. doi: 10.1016/S0893-133X(01)00370-0. [DOI] [PubMed] [Google Scholar]
  • 98.Heresco-Levy U. In: Amino acid transmitter systems, in Biological Psychiatry. D’haenen H., Boer J.A., Westenberg M., Willner P., editors. London: John Wiley & Sons; 2002. pp. 587–600. [Google Scholar]
  • 99.Hashimoto K., Fukushima T., Shimizu E., Komatsu N., Watanabe H., Shinoda N., Nakazato M., Kumakiri C., Okada S., Hasegawa H., Imai K., Iyo M. Decreased serum levels of D-serine in patients with schizophrenia. Arch Gen Psychiatry. 2003;60:572–576. doi: 10.1001/archpsyc.60.6.572. [DOI] [PubMed] [Google Scholar]
  • 100.Guy N., Monica B., Boaz B., Ilana K., Marina E., Daniel C. Javitt, Uriel Heresco-Levy. Relation of Plasma Glycine, Serine and Homocysteine Levels to Schizophrenia Symptoms and Medication Type. Am J Psychiatry. 2005;162:1738–1740. doi: 10.1176/appi.ajp.162.9.1738. [DOI] [PubMed] [Google Scholar]
  • 101.Sumiyoshi T., Anil Elif A., Yin D., Jayathialke K., Lee M., Meltzer H.Y. Plasma, glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropsychopharmacol. 2004;7:1–8. doi: 10.1017/S1461145703003900. [DOI] [PubMed] [Google Scholar]
  • 102.Lipton S.A., Kim W., Choi Y., Kumar S., D’Emilia D.M., Rayadu P.V., Arnelle D.R., Stamler J.S. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA. 1997;94:5923–5928. doi: 10.1073/pnas.94.11.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Rosenquist T.M., Schneider A.M., Monaghan D.T. N-Methyl-Daspartate receptor agonists modulate homocysteineinduced developmental abnormalities. FASEB J. 1999;13:1523–1531. doi: 10.1096/fasebj.13.12.1523. [DOI] [PubMed] [Google Scholar]
  • 104.Friedman A., Kaufer D., Shemer J., Hendler I., Soreq H., Tur-Kaspa I. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces immediate transcriptional response. Nat Med. 1996;2:1382–1385. doi: 10.1038/nm1296-1382. [DOI] [PubMed] [Google Scholar]
  • 105.Kruman I.I., Culmsee C., Chan S.L., Kruman Y., Guo Z., Penix L., Mattson M.P. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci. 2000;20:6920–6926. doi: 10.1523/JNEUROSCI.20-18-06920.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Pollin W., Cardon P., Kety S. Effect of amino acid feedings in schizophrenic patients treated with iproniazid. Science. 1961;133:104–105. doi: 10.1126/science.133.3446.104. [DOI] [PubMed] [Google Scholar]
  • 107.Brown A.S., Susser E.S. Homocysteine and schizophrenia: from prenatal to adult life. Review article. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1175–1180. doi: 10.1016/j.pnpbp.2005.06.028. [DOI] [PubMed] [Google Scholar]
  • 108.Graham I. Homocysteine Metabolism: From Basic Science to Clinical Medicine. Boston, Mass: Kluwer Academic Publishers; 1997. [Google Scholar]
  • 109.Lewis C.A., Pancharuniti N., Sauberlich H.E. Plasma folate adequacy as determined by homocysteine level. Ann N Y Acad Sci. 1992;669:360–362. doi: 10.1111/j.1749-6632.1992.tb17123.x. [DOI] [PubMed] [Google Scholar]
  • 110.McPartlin J., Halligan A., Scott J.M., Darling M., Weir D.G. Accelerated folate breakdown in pregnancy. Lancet. 1993;341:148–149. doi: 10.1016/0140-6736(93)90007-4. [DOI] [PubMed] [Google Scholar]
  • 111.Brown A.S., Bottiglieri T., Schaefer C.A., Quesenberry C.P., Jr, Liu L., Bresnahan M., Susser E.S. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry. 2007;64:31–39. doi: 10.1001/archpsyc.64.1.31. [DOI] [PubMed] [Google Scholar]
  • 112.Coyle J.T. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol. 2004;68:1507–1514. doi: 10.1016/j.bcp.2004.07.034. [DOI] [PubMed] [Google Scholar]
  • 113.Guidotti A., Auta J., Davis J.M., Dong E., Grayson D.R., Veldic M., Zhang X., Costa E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005;180:191–205. doi: 10.1007/s00213-005-2212-8. [DOI] [PubMed] [Google Scholar]
  • 114.Lewis D.A., Hashimoto T., Volk D.W. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–324. doi: 10.1038/nrn1648. [DOI] [PubMed] [Google Scholar]
  • 115.Benes F.M., Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacol. 2001;25:1–27. doi: 10.1016/S0893-133X(01)00225-1. [DOI] [PubMed] [Google Scholar]
  • 116.Hashimoto T., Volk D.W., Eggan S.M., Mirnics K., Pierri J.N., Sun Z., Sampson A.R., Lewis D.A. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23:6315–6326. doi: 10.1523/JNEUROSCI.23-15-06315.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Buzsaki G., Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929. doi: 10.1126/science.1099745. [DOI] [PubMed] [Google Scholar]
  • 118.Howard M.W., Rizzuto D.S., Caplan J.B., Madsen J.R., Lisman J., Aschenbrenner-Scheibe R., Schulze-Bonhage A., Kahana M.J. Gamma oscillations correlate with working memory load in humans. Cereb Cortex. 2003;13:1369–1374. doi: 10.1093/cercor/bhg084. [DOI] [PubMed] [Google Scholar]
  • 119.Spencer K.M., Nestor P.G., Niznikiewicz M.A., Salisbury D.F., Shenton M.E., McCarley R.W. Abnormal neural synchrony in schizophrenia. J Neurosci. 2003;23:7407–7411. doi: 10.1523/JNEUROSCI.23-19-07407.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Spencer K.M., Nestor P.G., Perlmutter R., Niznikiewicz M.A., Klump M.C., Frumin M., Shenton M.E., McCarley R.W. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA. 2004;101:17288–17293. doi: 10.1073/pnas.0406074101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Lewis D.A., Volk D.W., Hashimoto T. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl) 2004;174:143–1450. doi: 10.1007/s00213-003-1673-x. [DOI] [PubMed] [Google Scholar]
  • 122.Curran T., D’Arcangelo G. Role of reelin in the control of brain development. Brain Res Brain Res Rev. 1998;26:285–294. doi: 10.1016/S0165-0173(97)00035-0. [DOI] [PubMed] [Google Scholar]
  • 123.Impagnatiello F., Guidotti A.R., Pesold C., Dwivedi Y., Caruncho H., Pisu M.G., et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA. 1998;95:15718–15723. doi: 10.1073/pnas.95.26.15718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Benes F.M. Model generation and testing to probe neural circuitry in the cingulate cortex of postmortem schizophrenic brain. Schizophr Bull. 1998;24:219–230. doi: 10.1093/oxfordjournals.schbul.a033322. [DOI] [PubMed] [Google Scholar]
  • 125.Guidotti A., Auta J., Davis J.M., Di-Giorgi-Gerevini V., Dwivedi Y., Grayson D.R., et al. Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57:1061–1069. doi: 10.1001/archpsyc.57.11.1061. [DOI] [PubMed] [Google Scholar]
  • 126.Woo T.U., Whitehead R.E., Melchitzky D.S., Lewis D.A. A subclass of prefrontal γ-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 1. 1998;95:5341–5346. doi: 10.1073/pnas.95.9.5341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Hyde T.M., Crook J.M. Cholinergic systems and schizophrenia: primary pathology or epiphenomena? J Chem Neuroanat. 2001;22:53–63. doi: 10.1016/S0891-0618(01)00101-6. [DOI] [PubMed] [Google Scholar]
  • 128.Kozak R., Martinez V., Young D., Brown H., Bruno J.P., Sarter M. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not nonperforming, rats. Neuropsychopharmacol. 2007;32:2074–2086. doi: 10.1038/sj.npp.1301352. [DOI] [PubMed] [Google Scholar]
  • 129.Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol. 1997;54:465–473. doi: 10.1001/archneur.1997.00550160091022. [DOI] [PubMed] [Google Scholar]
  • 130.Bymaster F.P. Possible role of muscarinic receptor agonists as therapeutic agents for psychosis. In: Breier A., Tran P.V., Herrera J.M., Tollefson G.D., Bymaster F.P., editors. Current Issues in the Psychopharmacology of Schizophrenia. Philadelphia: Lippincott, Williams & Wilkins Healthcare; 2001. pp. 333–348. [Google Scholar]
  • 131.Perry K.W., Nisenbauma L.K., Georgea C.A., Shannona H.E., Feldera C.C., Bymaster F.P. The muscarinic agonist xanomeline has antipsychotic-like activity in animals and in man. Schizophr Res. 1999;36:117–118. [Google Scholar]
  • 132.Svensson T. NE uptake inhibition: implications for brain dopaminergic functioning and antipsychotic drug action. Program and abstracts of the XXIIIrd Congress of the Collegium Internationale Neuro-Psychopharmacologicum; June 23–27, 2002; Montreal, Canada. Abstract S.07.5.
  • 133.Grenhoff J., Nisell M., Ferre S., Aston-Jones G., Svensson T.H. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J Neural Transm Gen Sect. 1993;93:11–25. doi: 10.1007/BF01244934. [DOI] [PubMed] [Google Scholar]
  • 134.Hertel P., Fagerquist M.V., Svensson T.H. Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science. 1999;286:105–107. doi: 10.1126/science.286.5437.105. [DOI] [PubMed] [Google Scholar]
  • 135.Litman R.E., Su T.-P., Potter W.Z., Hong W.W., Pickar D. Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia: comparison with the atypical neuroleptic, clozapine. Br J Psychiatry. 1996;168:571–579. doi: 10.1192/bjp.168.5.571. [DOI] [PubMed] [Google Scholar]
  • 136.Hertel P., Nomikos G.G., Svensson T.H. The antipsychotic drug risperidone interacts with auto- and hetero-receptors regulating serotonin output in the rat frontal cortex. Neuropharmacol. 1999;38:1175–1184. doi: 10.1016/S0028-3908(99)00045-3. [DOI] [PubMed] [Google Scholar]
  • 137.Ballmaier M., Zoli M., Mazzoncini R., Gennarelli M., Spano P.R. Combined alpha2-adrenergic/D-sub-2 dopamine receptor blockade fails to reproduce the ability of clozapine to reverse phencyclidine-induced deficits in prepulse inhibition of startle. Psychopharmacol. 2001;159:105–110. doi: 10.1007/s002130100905. [DOI] [PubMed] [Google Scholar]
  • 138.Stein L., Wise C.D. Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science. 1971;171:1032–1036. doi: 10.1126/science.171.3975.1032. [DOI] [PubMed] [Google Scholar]
  • 139.Kim Y.H., Shin J.C. Neuropeptides in clinical psychiatric research-endorphins and cholecystokinins. J Korean Soc Biol Psychiatry. 1998;5:34–45. [Google Scholar]
  • 140.Binder E.B., Kinkead B., Owens M.J., Nemeroff C.B. The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry. 2001;50:856–872. doi: 10.1016/S0006-3223(01)01211-2. [DOI] [PubMed] [Google Scholar]
  • 141.Coyle J. The nagging question of the function of Nacetylaspartylglutamate. Neurobiol Dis. 1997;4:231–238. doi: 10.1006/nbdi.1997.0153. [DOI] [PubMed] [Google Scholar]
  • 142.Kegles L., Humaran T.J., Mann J.J. In vivo neurochemistry of brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry. 1998;44:382–388. doi: 10.1016/S0006-3223(97)00425-3. [DOI] [PubMed] [Google Scholar]
  • 143.Neale J.H., Bzdega T., Wroblewska B. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem. 2000;75:443–452. doi: 10.1046/j.1471-4159.2000.0750443.x. [DOI] [PubMed] [Google Scholar]
  • 144.Nudmamud S., Reynolds L.M., Reynolds G.P. N-Acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study. Biol Psychiatry. 2003;53:1138–1141. doi: 10.1016/S0006-3223(02)01742-0. [DOI] [PubMed] [Google Scholar]
  • 145.Bertolino A., Callicott J.H., Elman I., Mattay V.S., Tedeschi G., Frank J.A., Breier A., Weinberger D.R. Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry. 1998;43:641–648. doi: 10.1016/S0006-3223(97)00555-6. [DOI] [PubMed] [Google Scholar]
  • 146.Yurgelun-Todd D.A., Renshaw P.F., Grubex S.A., Ed M., Waternaux C., Cohen B.M. Proton magnetic resonance spectroscopy of the temporal lobes in schizophrenics and normal controls. Schizophr Res. 1996;19:55–59. doi: 10.1016/0920-9964(95)00071-2. [DOI] [PubMed] [Google Scholar]
  • 147.Morris H.M., Hashimoto T., Lewis D.A. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex. 2008;18:1575–1587. doi: 10.1093/cercor/bhm186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Kasckow J., Nemeroff C.B. The neurobiology of neurotensin: focus on neurotensin-dopamine interactions. Regul Pept. 1991;36:153–164. doi: 10.1016/0167-0115(91)90053-J. [DOI] [PubMed] [Google Scholar]
  • 149.Kinkead B., Nemeroff C.B. Neurotensin, schizophrenia and antipsychotic drug action. Int Rev Neurobiol. 2004;59:327–49. doi: 10.1016/S0074-7742(04)59013-X. [DOI] [PubMed] [Google Scholar]
  • 150.Cáceda R., Kinkead B., Nemeroff C.B. Do neurotensin receptor agonists represent a novel class of antipsychotic drugs? Semin Clin Neuropsychiatry. 2003;8:94–108. doi: 10.1053/scnp.2003.50009. [DOI] [PubMed] [Google Scholar]
  • 151.Cáceda R., Kinkead B., Owens M.J., Nemeroff C.B. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation. J Neurosci. 2005;25:11748–11756. doi: 10.1523/JNEUROSCI.4282-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Hernando F., Fuentes J.A., Fournié-Zaluski M.C., Roques B.P., Ruiz-Gayo M. Antidepressant-like effect of CCKb receptor antagonist: involvement of the opioid system. Eur J Pharmacol. 1996;318:221–229. doi: 10.1016/S0014-2999(96)00773-X. [DOI] [PubMed] [Google Scholar]
  • 153.Sedvall G., Farde L. Chemical brain anatomy in schizophrenia. Lancet. 1995;346:743–749. doi: 10.1016/S0140-6736(95)91508-7. [DOI] [PubMed] [Google Scholar]
  • 154.Wei J., Hemmings G.P. The CCK-A receptor gene possibly associated with auditory hallucinations in schizophrenia. Eur Psychiatry. 1999;14:67–70. doi: 10.1016/S0924-9338(99)80719-6. [DOI] [PubMed] [Google Scholar]
  • 155.Miller C., Kirchman R., Troger J., Savia A., Fleischhacker W.W., Fischer-Colbrie R., Benzer A., Winkler H. CSF of neurolepticnaive first-episode schizophrenic patients: levels of biogenic amines, substance P, and peptides derived from chromogranin A (GE-25) and secretogranin II (secretoneurin) Biol Psychiatry. 1996;39:911–918. doi: 10.1016/0006-3223(95)00098-4. [DOI] [PubMed] [Google Scholar]
  • 156.Bachus S.E., Hyde T.M., Herman M.M., Egan M.F., Kleinman J.E. Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J Psychiatr Res. 1997;31:233–256. doi: 10.1016/S0022-3956(96)00041-6. [DOI] [PubMed] [Google Scholar]
  • 157.Goldman M.B., Robertson G.L., Luchins D.J., Hedeker D., Pandey G.N. Psychotic exacerbations and enhanced vasopressin secretion in schizophrenic patients with hyponatremia and polydipsia. Arch Gen Psychiatry. 1997;54:445–449. doi: 10.1001/archpsyc.1997.01830170069010. [DOI] [PubMed] [Google Scholar]
  • 158.Womelduff J.C. Neurohormones, schizophrenia and pain: an endocrine-based review. J Amer Chiropr Assoc. 1999;36:28–31. [Google Scholar]
  • 159.Walker E.F., Diforio D. Schizophrenia: a neural diathesisstress model. Psychol Rev. 1997;104:667–685. doi: 10.1037/0033-295X.104.4.667. [DOI] [PubMed] [Google Scholar]
  • 160.Marx C.E., Lieberman J.A. Psychoneuroendocrinology of schizophrenia. Psychiatr Clin North Am. 1998;21:413–434. doi: 10.1016/S0193-953X(05)70013-7. [DOI] [PubMed] [Google Scholar]
  • 161.Sharma R.P., Pandey G.N., Janicak P.G., Peterson J., Comaty J.E., Davis J.M. The effect of diagnosis and age on the DST: a metaanalytic approach. Biol Psychiatry. 1988;24:555–568. doi: 10.1016/0006-3223(88)90166-7. [DOI] [PubMed] [Google Scholar]
  • 162.Yeragani V.K. The incidence of abnormal dexamethasone suppression in schizophrenia: a review and a meta-analytic comparison with the incidence in normal controls. Can J Psychiatry. 1990;35:128–132. doi: 10.1177/070674379003500204. [DOI] [PubMed] [Google Scholar]
  • 163.Coryell W., Tsuang D. Hypothalamic-pituitary-adrenal axis hyperactivity and psychosis: recovery during an 8-year followup. Am J Psychiatry. 1992;149:1033–1039. doi: 10.1176/ajp.149.8.1033. [DOI] [PubMed] [Google Scholar]
  • 164.Jansen L.M., Gispen-de Wied C.C., Gademan P.J., Jonge R.C., Linden J.A., Kahn R.S. Blunted cortisol response to a psychosocial stressor in schizophrenia. Schizophr Res. 1998;33:87–94. doi: 10.1016/S0920-9964(98)00066-8. [DOI] [PubMed] [Google Scholar]
  • 165.Kaneda Y., Fujii A., Ohmori T. The hypothalamic-pituitary- adrenal axis in chronic schizophrenic patients long-term treated with neuroleptics. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:935–938. doi: 10.1016/S0278-5846(02)00208-7. [DOI] [PubMed] [Google Scholar]
  • 166.Kaneko M., Yokoyama F., Hoshino Y., Takahagi K., Murata S., Watanabe M., Kumashiro H. Hypothalamic-pituitary-adrenal axis function in chronic schizophrenia: association with clinical features. Neuropsychobiol. 1992;25:1–7. doi: 10.1159/000118800. [DOI] [PubMed] [Google Scholar]
  • 167.Walder D.J., Walker E.F., Lewine R.J. Cognitive functioning, cortisol release, and symptom severity in patients with schizophrenia. Biol Psychiatry. 2000;48:1121–1132. doi: 10.1016/S0006-3223(00)01052-0. [DOI] [PubMed] [Google Scholar]
  • 168.Newcomer J.W., Faustman W.O., Whiteford H.A., Moses J.A., Jr, Csernansky J.G. Symptomatology and cognitive impairment associate independently with post-dexamethasone cortisol concentrations in unmedicated schizophrenic patients. Biol Psychiatry. 1991;29:855–864. doi: 10.1016/0006-3223(91)90052-N. [DOI] [PubMed] [Google Scholar]
  • 169.Tandon R., Mazzara C., DeQuardo J., Craig K.A., Meador-Woodruff J.H., Goldman, Greden J.F. Dexamethasone suppression test in schizophrenia: relationship to symptomatology, ventricular enlargement, and outcome. Biol Psychiatry. 1991;29:953–964. doi: 10.1016/0006-3223(91)90353-N. [DOI] [PubMed] [Google Scholar]
  • 170.Breier A., Davis O.R., Buchanan R.W., Moricle L.A., Munson R.C. Effects of metabolic perturbation on plasma homovanillic acid in schizophrenia: relationship to prefrontal cortex volume. Arch Gen Psychiatry. 1993;50:541–550. doi: 10.1001/archpsyc.1993.01820190043005. [DOI] [PubMed] [Google Scholar]
  • 171.Elman I., Adler C.M., Malhotra A.K., Bir C., Pickar D., Breier A. Effect of acute metabolic stress on pituitary-adrenal axis activation in patients with schizophrenia. Am J Psychiatry. 1998;155:979–981. doi: 10.1176/ajp.155.7.979. [DOI] [PubMed] [Google Scholar]
  • 172.Hanson D.R., Gottesman I.I. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet. 2005;6:7. doi: 10.1186/1471-2350-6-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Saetre P., Emilsson L., Axelsson E., Kreuger J., Lindholm E., Jazin E. Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry. 2007;7:46. doi: 10.1186/1471-244X-7-46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Chengappa K.N., Ganguli R., Yang Z.W., Shurin G., Brar J.S., Rabin B.S. Impaired mitogen (PHA) responsiveness and increased autoantibodies in Caucasian schizophrenic patients with the HLA B8/DR3 phenotype. Biol Psychiatry. 1995;37:546–549. doi: 10.1016/0006-3223(94)00363-8. [DOI] [PubMed] [Google Scholar]
  • 175.Henneberg A.E., Horter S., Ruffert S. Increased prevalence of antibrain antibodies in the sera from schizophrenic patients. Schizophr Res. 1994;14:15–22. doi: 10.1016/0920-9964(94)90004-3. [DOI] [PubMed] [Google Scholar]
  • 176.Lin A., Kenis G., Bignotti S., Tura G.J., Jong R., Bosmans E., Pioli R., Altamura C., Scharpé S., Maes M. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res. 1998;32:9–15. doi: 10.1016/S0920-9964(98)00034-6. [DOI] [PubMed] [Google Scholar]
  • 177.Maes M., Bocchio Chiavetto L., Bignotti S., Battisa Tura G.J., Pioli R., Boin F., Kenis G., Bosmans E., Jongh R., Altamura C.A. Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res. 2002;54:281–91. doi: 10.1016/S0920-9964(00)00094-3. [DOI] [PubMed] [Google Scholar]
  • 178.Arolt V., Rothermundt M., Wandinger K.P., Kirchner H. Decreased in vitro production of interferon-gamma and interleukin-2 in whole blood of patients with schizophrenia during treatment. Mol Psychiatry. 2000;5:150–158. doi: 10.1038/sj.mp.4000650. [DOI] [PubMed] [Google Scholar]
  • 179.Zhang X.Y., Zhou D.F., Zhang P.Y., Wu G.Y., Shen Y.C. Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res. 2002;57:247–258. doi: 10.1016/S0920-9964(01)00296-1. [DOI] [PubMed] [Google Scholar]
  • 180.Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci. 1982;389:39–48. doi: 10.1111/j.1749-6632.1982.tb22124.x. [DOI] [PubMed] [Google Scholar]
  • 181.Alias A.G., Vijayan N., Nair D.S., Sukumaran M. Serum ceruloplasmin in schizophrenia: significant increase in acute cases especially in catatonia. Biol Psychiatry. 1972;4:231–238. [PubMed] [Google Scholar]
  • 182.Giner J., Morell M., Osorio C. Serum levels of ceruloplasmin as an index of the clinical evolution in schizophrenic patients. Rev Esp Fisiol. 1972;28:39–41. [PubMed] [Google Scholar]
  • 183.Domino E.F., Krause R.R., Thiessen M.M., Batsakis J.G. Blood protein fraction comparisons of normal and schizophrenic patients. Arch Gen Psychiatry. 1975;32:717–721. doi: 10.1001/archpsyc.1975.01760240045003. [DOI] [PubMed] [Google Scholar]
  • 184.Puzynski S., Kalinowski A. Investigations of some physiobiochemical properties of ceruloplasmin in schizophrenics and in normal subjects. Nature. 1966;212:399–400. doi: 10.1038/212399a0. [DOI] [PubMed] [Google Scholar]
  • 185.Morera A.L., Henry M., García-Hernández A., Fernandez-López L. Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Acta Esp Psiquiatr. 2007;35:249–252. [PubMed] [Google Scholar]
  • 186.Yang Y., Wan C., Li H., Zhu H., La Y., Xi Z., Chen Y., Jiang L., Feng G., He L. Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal Chem. 2006;78:3571–3576. doi: 10.1021/ac051916x. [DOI] [PubMed] [Google Scholar]
  • 187.Arion D., Unger T., Lewis D.A., Levitt P., Mirnics K. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry. 2007;62:711–721. doi: 10.1016/j.biopsych.2006.12.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Wan C., La Y., Zhu H., Yang Y., Jiang L., Chen Y., Feng G., Li H., Sang H., Hao X., Zhang G., He L. Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene. Amino Acids. 2007;32:101–108. doi: 10.1007/s00726-005-0292-8. [DOI] [PubMed] [Google Scholar]
  • 189.Muller N., Ackenheil M. Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 1998;22:1–33. doi: 10.1016/S0278-5846(97)00179-6. [DOI] [PubMed] [Google Scholar]
  • 190.Kronfol Z., Remick D.G. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157:683–694. doi: 10.1176/appi.ajp.157.5.683. [DOI] [PubMed] [Google Scholar]
  • 191.Naudin J., Capo C., Giusano B., Mège J.C., Azorin J.M. A differential role for interleukin-6 and tumor necrosis factor in schizophrenia? Schiz. Res. 1997;26:227–33. doi: 10.1016/S0920-9964(97)00059-5. [DOI] [PubMed] [Google Scholar]
  • 192.Cazzullo C.L., Sacchetti E., Galluzzo A., Panariello A., Adorni A., Pegoraro M., et al. Cytokine profiles in schizophrenic patients treated with risperidone: a 3-month follow-up study. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:33–39. doi: 10.1016/S0278-5846(01)00221-4. [DOI] [PubMed] [Google Scholar]
  • 193.Na K.S., Kima Y.K. Monocytic, Th1 and Th2 cytokine alterations in the pathophysiology of schizophrenia. Neuropsychobiol. 2007;56:55–63. doi: 10.1159/000111535. [DOI] [PubMed] [Google Scholar]
  • 194.Haddad J.J., Saade N.E., Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol. 2002;133:1–19. doi: 10.1016/S0165-5728(02)00357-0. [DOI] [PubMed] [Google Scholar]
  • 195.Zhang X.Y., Zhou D.F., Cao L.Y., Wu G.Y., Shen Y.C. Cortisol and cytokines in chronic and treatment resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacol. 2005;30:1532–1538. doi: 10.1038/sj.npp.1300756. [DOI] [PubMed] [Google Scholar]
  • 196.Frommberger W.H., Bauer J., Haselbauer P., Fräulin A., Riemann D., Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute phase and after remission. Eur Arch Psychiatr Clin Neurosci 1. 1997;247:228–233. doi: 10.1007/BF02900219. [DOI] [PubMed] [Google Scholar]
  • 197.Tamam L., Yerdelen D., Ozpoyraz N. Psychosis associated with interferon alfa therapy for chronic hepatitis B. Ann Pharmacother. 2003;37:384–387. doi: 10.1345/aph.1C266. [DOI] [PubMed] [Google Scholar]
  • 198.Zhang X.Y., Zhou D.F., Cao L.Y., Zhang P.Y., Wu G.Y., Shen Y.C. Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry. 2004;65:940–947. doi: 10.4088/JCP.v65n0710. [DOI] [PubMed] [Google Scholar]
  • 199.Muller N., Riedel M., Scheppach C., Brandstatter B., Sokullu S., Krampe K., et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry. 2002;159:1029–1034. doi: 10.1176/appi.ajp.159.6.1029. [DOI] [PubMed] [Google Scholar]
  • 200.Shulman Y., Tibbo P.G. Neuroactive steroids in schizophrenia. Can J Psychiatry. 2005;50:695–702. doi: 10.1177/070674370505001109. [DOI] [PubMed] [Google Scholar]
  • 201.Paul S.M., Purdy R.H. Neuroactive steroids. FASEB J. 1992;6:2311–2322. [PubMed] [Google Scholar]
  • 202.Rupprecht R., Holsboer F. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 1999;22:410–416. doi: 10.1016/S0166-2236(99)01399-5. [DOI] [PubMed] [Google Scholar]
  • 203.Rupprecht R. The neuropsychopharmacological potential of neuroactive steroids. J Psychiar Rest. 1997;31:297–314. doi: 10.1016/S0022-3956(96)00060-X. [DOI] [PubMed] [Google Scholar]
  • 204.Rupprecht R., Holsboer F. Neuroactive steroids in neuropsychopharmacology. Int Rev Neurobiol. 2001;46:461–477. doi: 10.1016/S0074-7742(01)46072-7. [DOI] [PubMed] [Google Scholar]
  • 205.Follesa P., Concas A., Porcu P., Sanna E., Serra M., Mostallino M.C., Purdy R.H., Biggio G. Role of allopregnanolone in the regulation of GABA-A receptor plasticity during long-term exposure to and withdrawal from progesterone. Brain Res Brain Res Rev. 2001;37:81–90. doi: 10.1016/S0165-0173(01)00125-4. [DOI] [PubMed] [Google Scholar]
  • 206.Twyman R.E., Macdonald R.L. Neurosteroid regulation of GABA-A receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol. 1992;456:215–245. doi: 10.1113/jphysiol.1992.sp019334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Shirayama Y., Hashimoto K., Suzuki Y., Higuchi T. Correlation of plasma neurosteroids to the severity of negative symptoms in male patients with schizophrenia. Schizophrenia Res. 2002;58:69–74. doi: 10.1016/S0920-9964(01)00367-X. [DOI] [PubMed] [Google Scholar]
  • 208.Marx C.E., Trost W.T., Shampine L.J., Lieberman J.A., Morrow A.L., Thakore J.H. Neuroactive steroids in schizophrenia: relevance to symptoms and therapeutics. Biol Psychiatry. 2004;55(Suppl8):171. [Google Scholar]
  • 209.Ritsner M., Maayan R., Gibel A., Strous R.D., Modai I., Weizman A. Elevation of the cortisol/dehydroepiandrosterone ratio in schizophrenia patients. Eur Neuropsychopharmacol. 2004;14:267–273. doi: 10.1016/j.euroneuro.2003.09.003. [DOI] [PubMed] [Google Scholar]
  • 210.Barbaccia M.D., Affricano D., Purdy R.H., Maciocco E., Spiga F., Biggio G. Clozapine, but not haloperidol, increases brain concentrations of neuroactive steroids in the rat. Neuropsychopharmacol. 2001;25:489–497. doi: 10.1016/S0893-133X(01)00254-8. [DOI] [PubMed] [Google Scholar]
  • 211.Ugale R.R., Hirani K., Morelli M., Chopde C.T. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacol. 2004;29:1597–1609. doi: 10.1038/sj.npp.1300460. [DOI] [PubMed] [Google Scholar]
  • 212.Strous R.D., Maayan R., Lapidus R., Stryjer R., Lustig M., Kotler M., Weizman A. Dehydroepiandrosterone augmentation in the management of negative, depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry. 2003;60:133–141. doi: 10.1001/archpsyc.60.2.133. [DOI] [PubMed] [Google Scholar]
  • 213.Lidow M.S. Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev. 2003;43:70–84. doi: 10.1016/S0165-0173(03)00203-0. [DOI] [PubMed] [Google Scholar]
  • 214.Lara D.R. Inhibitory deficit in schizophrenia is not necessarily a GABAergic deficit. Cell Mol Neurobiol. 2002;22:239–247. doi: 10.1023/A:1020759615977. [DOI] [PubMed] [Google Scholar]
  • 215.Ghisolfi E.S., Prokopiuk A.S., Becker J., Ehlers J.A., Belmontede-Abreu P., Souza D.O., Lara D.R. The adenosine antagonist theophylline impairs p50 auditory sensory gating in normal subjects. Neuropsychopharmacol. 2002;27:629–637. doi: 10.1016/S0893-133X(02)00337-8. [DOI] [PubMed] [Google Scholar]
  • 216.Nawa H., Takahashi M., Patterson P.H. Cytokine and growth factor involvement in schizophrenia: support for the developmental model. Mol Psychiatry. 2000;5:594–603. doi: 10.1038/sj.mp.4000730. [DOI] [PubMed] [Google Scholar]
  • 217.Maynard T.M., Sikich L., Lieberman J.A., LaMantia A.S. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull. 2001;27:457–476. doi: 10.1093/oxfordjournals.schbul.a006887. [DOI] [PubMed] [Google Scholar]
  • 218.Glantz L.A., Lewis D.A. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 1997;54:660–665. doi: 10.1001/archpsyc.1997.01830190088009. [DOI] [PubMed] [Google Scholar]
  • 219.Tcherepanov A.A., Sokolov B.P. Age-related abnormalities in expression of mNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal lobe of schizophrenics. J Neurosci Res. 1997;49:639–644. doi: 10.1002/(SICI)1097-4547(19970901)49:5<639::AID-JNR14>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 220.Vawter M.P., Cannon-Spoor H.E., Hemperly J.J., Hyde T.M., VanderPutten D.M., Kleinman J.E., Freed W.J. Abnormal expression of cell recognition molecules in schizophrenia. Exp Neurol. 1998;149:424–452. doi: 10.1006/exnr.1997.6721. [DOI] [PubMed] [Google Scholar]
  • 221.Blennow K., Davidsson P., Gottfries C.G., Ekman R., Heilig M. Synaptic degeneration in thalamus in schizophrenia. Lancet. 1996;348:692–693. doi: 10.1016/S0140-6736(05)65124-0. [DOI] [PubMed] [Google Scholar]
  • 222.Honer W.G., Falkai P., Young C., Wang T., Xie J., Bonner J., Hu L., Boulianne G.L., Luo Z., Trimble W.S. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience. 1997;78:99–110. doi: 10.1016/S0306-4522(96)00489-7. [DOI] [PubMed] [Google Scholar]
  • 223.Cotter D., Kerwin R., Doshi B., Martin C.S., Everall I.P. Alterations in hippocampus non-phosphorylated MAP2 protein expression in schizophrenia. Brain Res. 1997;765:238–246. doi: 10.1016/S0006-8993(97)00575-1. [DOI] [PubMed] [Google Scholar]
  • 224.Perrone-Bizzozero N.I., Sower A.C., Bird E.D., Benowitz L.I., Ivins K.J., Neve R.L. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Nat Acad Sci USA. 1996;93:14182–14187. doi: 10.1073/pnas.93.24.14182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Thompson P.M., Sower A.C., Perrone-Bizzozero N.I. Altered levels of the synaptosome associated protein SNAP-25 in schizophrenia. Biol Psychiatry. 1998;43:239–243. doi: 10.1016/S0006-3223(97)00204-7. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES