Abstract
Modified low density lipoproteins (LDL), including their oxidized forms, have been widely implicated in the etiology of atherosclerosis and concomitant cardiovascular disease (CVD) in chronic renal failure (CRF). The nature of events that lead to oxidative changes in LDL proteins are not clearly understood. Thus, patients suffering from CRF were grouped into mild, moderate and severe categories based on their blood urea and serum creatinine levels. Progression of CRF was accompanied not only with gradual increase in serum malondialdehyde (MDA) but also parallel increase in conjugated diene and MDA levels in LDL fractions separated from serum. Serum superoxide dismutase (SOD) activity was concurrently found to decrease, along with a decrease in high-density lipoprotein (HDL) cholesterol, during the progression of CRF. Gradual increase in the appearance of LDL oxidation products seems to accompany progressive manifestation of CRF. The results presented suggest that determination of serum MDA and SOD levels may enhance the diagnostic significance of the study of lipid profile in determining the risk for cardio vascular disease in CRF.
Key words: Chronic renal failure, Malondialdehyde, Superoxide dismutase, Low density lipoproteins, Lipid peroxidation
Full Text
The Full Text of this article is available as a PDF (480.8 KB).
References
- 1.Degoulet P., Legarin M., Reach A. F., Devris C., Rojas P., Jacobs C. Mortality risk factors in patients treated by chronic hemodialysis. Nephron. 1982;31:103–110. doi: 10.1159/000182627. [DOI] [PubMed] [Google Scholar]
- 2.Steinberg D., Parthsarathy S., Carew T. E., Khooj C., Witzum J. L. Beyond cholesterol, modification of LDL that increases its atherogenesity. New Eng. J. Med. 1989;320:915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- 3.Gibbsons G. H., Dzam V. J. Molecular therapies for vascular diseases. Science. 1996;272:689–693. doi: 10.1126/science.272.5262.689. [DOI] [PubMed] [Google Scholar]
- 4.Begdade J. D., Porte D.J.R., Bierman E. L. Hypertriglyceridemia a metabolic consequence of chronic renal failure. New Engl. J. Med. 1968;264:181–185. doi: 10.1056/NEJM196807252790403. [DOI] [PubMed] [Google Scholar]
- 5.Senti M., Ramero R., Pedro-Botet J., Pellegro A., Nogues Z, Rubies-Prat J. Lipoprotein abnormalities in hyperlipidemic and normolipidemic men on hemodialysis with chronic renal failure. Kidney Int. 1992;41:1394–1399. doi: 10.1038/ki.1992.204. [DOI] [PubMed] [Google Scholar]
- 6.Bhagwat R., Joshi S. P., Salgia P, Sepaha A. Lipid abnormalities in chronic renal failure. Ind. J. Clin. Biochem. 1997;12:81–85. doi: 10.1007/BF02867962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Mahfouz M. O., Hariprasad I. A., Shaffe, Sadasivudu B. Serum MDA levels in myocardial infarction and chronic renal failure. IRCS Med. Sci. 1986;14:1110–1111. [Google Scholar]
- 8.Jackson P., Loughrey F.M., Lightbody J. H., McNamee P. T., Young I. S. Effect of hemodialysis on total antioxidant capacity and serum antioxidants in patients with chronic renal failure. Clin. Chem. 1995;41:1135–1138. [PubMed] [Google Scholar]
- 9.Holvoet P., Perez G., Zhao Z., Brouwers E., Bernar H., Collen D. Malondialdehyde—modified low density lipoproteins in patients with atherosclerotic disease. J. Clin. Invest. 1995;95:2611–2619. doi: 10.1172/JCI117963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Chauhan D.P., Gupta P.H., Nampoothiri M.R.N., Singhal P.C., Chugh K.S., Nair C.R. Determination of erythrocyte superoxide dismutase, catalase, glucose 6 phosphate dehydrogenase, reduced glutathione and malondialdehyde in chronic renal failure. Clin. Chim. Acta. 1982;123:153–159. doi: 10.1016/0009-8981(82)90124-3. [DOI] [PubMed] [Google Scholar]
- 11.Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
- 12.Karlson K., Marklund S.L. Binding of human extracellular superoxide dismutase to cultured cell lines and to blood cells. J. Lab. Invest. 1989;60:659–666. [PubMed] [Google Scholar]
- 13.Whelton A., Watson A.J., Robert C.R. Nitrogen metabolites and renal function. In: Burtis C.A., Ashwood E.R., editors. Teitz Text book of clinical chemistry. 2nd edition. USA: W.B. Saunders Co; 1994. pp. 1513–1568. [Google Scholar]
- 14.Sadasivudu B., Sashikala M., Sailaja V., Surender Reddy S. Serum malondialdehyde, insulin, glucose and lipid profile in hypertension. Med. Sci. Res. 1997;25:631–633. [Google Scholar]
- 15.Belch J.J.F., Bridges A.B., Scott N., Chopra M. Oxygen free radicals and congestive heart failure. Brit. Heart J. 1997;65:215–218. doi: 10.1136/hrt.65.5.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Ahotupa M., Ruutu M., Mantyla E. Simple methods for quantifying oxidation products and antioxidant potential of low density lipoporteins. Clin. Biochem. 1996;29:139–145. doi: 10.1016/0009-9120(95)02043-8. [DOI] [PubMed] [Google Scholar]
- 17.Kakkar P., Das B., Viswanathan P. N. A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys. 1984;21:130–132. [PubMed] [Google Scholar]
- 18.Oberley L.W., Li Y. Simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988;34/3:501–504. [PubMed] [Google Scholar]
- 19.Stainberg D., Witztum J.L. Lipoproteins and atherogenesis. J. Amer. Med. Assoc. 1990;264:3047–3052. doi: 10.1001/jama.264.23.3047. [DOI] [PubMed] [Google Scholar]
- 20.Morel D. W., Chisolm G.M. Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J. Lipid Res. 1989;30:1827–1834. [PubMed] [Google Scholar]
- 21.Witzum J.L, Steiburg D. Role of oxidized LDL in atherogenesis. J. Clin. Invest. 1991;88:1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Karlson K., Marklund S.L. Heparin induced release of extracellular SOD to human blood plasma. Biochem. J. 1987;242:55–59. doi: 10.1042/bj2420055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Kono Y., Fridovich I. Superoxide radical inhibits catalase. J. Biol. Chem. 1982;257:5751–5754. [PubMed] [Google Scholar]
- 24.Huang J., Huang Z., Zhu W. Mechanism of high density lipoprotein subfractions inhibiting copper catalysed oxidation of low density lipoproteins. Clin. Biochem. 1998;31:537–543. doi: 10.1016/S0009-9120(98)00060-5. [DOI] [PubMed] [Google Scholar]