Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jun;81(11):3419–3423. doi: 10.1073/pnas.81.11.3419

In vitro transformation of mesenchymal cells derived from embryonic muscle into cartilage in response to extracellular matrix components of bone.

T K Sampath, M A Nathanson, A H Reddi
PMCID: PMC345519  PMID: 6587359

Abstract

Subcutaneous implantation of demineralized diaphyseal bone matrix into rats induces cartilage and bone formation in vivo. When minced skeletal muscle is cultured on hemicylinders of demineralized bone in vitro, mesenchymal cells are transformed into chondrocytes. In the present investigation, the potential of extracellular matrix components of bone to trigger cartilage differentiation in vitro was examined. Extraction of bone hemicylinders with 6 M guanidine X HCl resulted in the absence of chondrogenesis in vitro and endochondral bone formation in vivo. Biologically inactive hemicylinders of bone were then reconstituted with the guanidine extract and also with partially purified components extracted from bone matrix and bioassayed. Reconstitution completely restored the ability to elicit chondrogenesis in vitro and endochondral bone differentiation in vivo. Reconstitution of the whole guanidine extract on Millipore filters coated with gels of tendon collagen (type I) and subsequent culture with minced skeletal muscle also resulted in cartilage induction in vitro. These observations show that the extracellular matrix of bone is a repository of factors that govern local cartilage and bone differentiation.

Full text

PDF
3422

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastassiades T., Puzic O., Puzic R. Effect of solubilized bone matrix components on cultured fibroblasts derived from neonatal rat tissues. Calcif Tissue Res. 1978 Dec 8;26(2):173–179. doi: 10.1007/BF02013253. [DOI] [PubMed] [Google Scholar]
  2. Elsdale T., Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972 Sep;54(3):626–637. doi: 10.1083/jcb.54.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Nathanson M. A., Hay E. D. Analysis of cartilage differentiation from skeletal muscle grown on bone matrix. I. Ultrastructural aspects. Dev Biol. 1980 Aug;78(2):301–331. doi: 10.1016/0012-1606(80)90338-3. [DOI] [PubMed] [Google Scholar]
  4. Nathanson M. A., Hilfer S. R., Searls R. L. Formation of cartilage by non-chondrogenic cell types. Dev Biol. 1978 May;64(1):99–117. doi: 10.1016/0012-1606(78)90063-5. [DOI] [PubMed] [Google Scholar]
  5. Nathanson M. A. Proteoglycan synthesis by skeletal muscle undergoing bone matrix-directed transformation into cartilage in vitro. J Biol Chem. 1983 Sep 10;258(17):10325–10334. [PubMed] [Google Scholar]
  6. Nogami H., Urist M. R. A morphogenetic matrix for differentiation of cartilage in tissue culture. Proc Soc Exp Biol Med. 1970 Jun;134(2):530–535. doi: 10.3181/00379727-134-34829. [DOI] [PubMed] [Google Scholar]
  7. Nogami H., Urist M. R. Substrata prepared from bone matrix for chondrogenesis in tissue culture. J Cell Biol. 1974 Aug;62(2):510–519. doi: 10.1083/jcb.62.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reddi A. H. Cell biology and biochemistry of endochondral bone development. Coll Relat Res. 1981 Feb;1(2):209–226. doi: 10.1016/s0174-173x(81)80021-0. [DOI] [PubMed] [Google Scholar]
  9. Reddi A. H., Huggins C. B. Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc Soc Exp Biol Med. 1973 Jul;143(3):634–637. doi: 10.3181/00379727-143-37381. [DOI] [PubMed] [Google Scholar]
  10. Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sampath T. K., DeSimone D. P., Reddi A. H. Extracellular bone matrix-derived growth factor. Exp Cell Res. 1982 Dec;142(2):460–464. doi: 10.1016/0014-4827(82)90389-5. [DOI] [PubMed] [Google Scholar]
  12. Sampath T. K., Reddi A. H. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7599–7603. doi: 10.1073/pnas.78.12.7599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sampath T. K., Reddi A. H. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6591–6595. doi: 10.1073/pnas.80.21.6591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Seyedin S. M., Thompson A. Y., Rosen D. M., Piez K. A. In vitro induction of cartilage-specific macromolecules by a bone extract. J Cell Biol. 1983 Dec;97(6):1950–1953. doi: 10.1083/jcb.97.6.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Urist M. R., DeLange R. J., Finerman G. A. Bone cell differentiation and growth factors. Science. 1983 May 13;220(4598):680–686. doi: 10.1126/science.6403986. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES