Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2002 Jun;19(6):279–283. doi: 10.1023/A:1015725230011

Effect of Pentoxifylline on Tumor Suppressor and Proto-Oncogene Apoptosis in Sperm

David T Maxwell 1, John D Jacobson 1, Alan King 1, Philip J Chan 1,2,
PMCID: PMC3455213  PMID: 12166633

Abstract

Purpose: Pentoxifylline (PTX), a methylxanthine phosphodiesterase inhibitor reduces superoxide anions responsible for DNA apoptosis. The null hypothesis was that PTX was equally effective in reducing damage to specific cell genes. The objective was to determine the DNA integrity of the BRCA1 tumor suppressor gene and the c-myc proto-oncogene after PTX.

Methods: Sperm (64 samples, 4 patients) were preincubated in either 0 (control) or 3.6 mM PTX (30 min), washed and incubated for 4 h at either 37 or 40°C heat shock activation. Single primer polymerase chain reactions (PCR) were carried out on lysed sperm targeting either BRCA1 exon 11 or c-myc exon 1. Control single-stranded DNA (ssDNA) were stained with 9 μM Hoechst 33342 (blue) while PTX-treated ssDNA were stained with SYBR Gold (green). Nytran membrane discs with control ssDNA were hybridized to PTX-derived ssDNA. Fluorescent images stored in a microarray design were analyzed using ANOVA and Students' t-test for (P < 0.05) significance.

Results:BRCA1 integrity was higher with PTX pretreatment (93.3 + 10.4 vs. control 50.5 + 9.2; mean + SEM). In contrast, there was no difference in c-myc integrity (56.8 + 9.0 vs. 41.7 + 6.4). Sense or antisense primers gave similar DNA fragmentation results.

Conclusions: The data showed PTX pretreatment protected BRCA1 but not c-myc suggesting that PTX did not equally protect different cell genes. A possible explanation was that proto-oncogenes had more fragile sites. The study involved the DNA disc chip assay to assess separate PCR-amplified sense and antisense strands. The results suggested that both strands were equally affected by PTX pretreatment.

Keywords: Comparative genomic hybridization, pentoxifylline, proto-oncogene, spermatozoa, tumor suppressor gene

Full Text

The Full Text of this article is available as a PDF (108.9 KB).

REFERENCES

  • 1.Stefanovich V. Effect of 3,7-dimethyl-1-(5-oxohexyl)-xanthine and 1-hexyl-3,7-dimethyl-xanthine on cyclic AMP phosphodiesterase of the human umbilical cord vessels. Res Commun Chem Pathol Pharmacol. 1973;5:655–662. [PubMed] [Google Scholar]
  • 2.Yovich JL. Pentoxifylline: Actions and applications in assisted reproduction. Hum Reprod. 1993;8:1786–1791. doi: 10.1093/oxfordjournals.humrep.a137935. [DOI] [PubMed] [Google Scholar]
  • 3.Van Furth AM, Verhard-Seijmonsbergen EM, van Furth R, Langermans JA. Effect of lisofylline and pentoxifylline on the bacterial-stimulated production of TNF-alpha, IL-beta IL-10 by human leucocytes. Immunology. 1997;91:193–196. doi: 10.1046/j.1365-2567.1997.00252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Gavella M, Lipovac V, Marotti T. Effect of pentoxifylline on superoxide anion production by human sperm. Int J Androl. 1991;14:320–327. doi: 10.1111/j.1365-2605.1991.tb01099.x. [DOI] [PubMed] [Google Scholar]
  • 5.Bessler H, GilGal R, Djaldetti M, Zahavi I. Effect of pentoxifylline on the phagocytic activity, cAMP levels, and superoxide anion production by monocytes and polymorphonuclear cells. J Leukoc Biol. 1986;40:747–754. doi: 10.1002/jlb.40.6.747. [DOI] [PubMed] [Google Scholar]
  • 6.Mundle SD, Reza S, Ali A, Mativi Y, Shetty V, Venugopal P, Gregory SA, Raza A. Correlation of tumor necrosis factor alpha (TNF alpha) with high caspase 3-like activity in myelodysplastic syndromes. Cancer Lett. 1999;140:201–207. doi: 10.1016/s0304-3835(99)00072-5. [DOI] [PubMed] [Google Scholar]
  • 7.Peeker R, Abramsson L, Marklund SL. Superoxide dismutase isoenzymes in human seminal plasma and spermatozoa. Mol Hum Reprod. 1997;3:1061–1066. doi: 10.1093/molehr/3.12.1061. [DOI] [PubMed] [Google Scholar]
  • 8.Aitken RJ, Harkiss D, Buckingham DW. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev. 1993;35:302–315. doi: 10.1002/mrd.1080350313. [DOI] [PubMed] [Google Scholar]
  • 9.Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: Lipid peroxidation,DNAfragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13:1429–1436. doi: 10.1093/humrep/13.6.1429. [DOI] [PubMed] [Google Scholar]
  • 10.Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: Potential cause forDNAfragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900. doi: 10.1093/humrep/13.4.896. [DOI] [PubMed] [Google Scholar]
  • 11.Pang SC, Chan PJ, Lu A. Effects of pentoxifylline on sperm motility and hyperactivation in normozoospermic and normokinetic semen. Fertil Steril. 1993;60:336–343. doi: 10.1016/s0015-0282(16)56108-1. [DOI] [PubMed] [Google Scholar]
  • 12.Alvarez JG, Minaretzis D, Barrett CB, Mortola JF, Thompson IE. The sperm stress test: A novel test that predicts pregnancy in assisted reproductive technologies. Fertil Steril. 1996;65:400–405. doi: 10.1016/s0015-0282(16)58107-2. [DOI] [PubMed] [Google Scholar]
  • 13.Smith T. L. S., Jerome N, McEuen M, Taylor M, Hood L, King MC. Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res. 1996;6:1029–1049. doi: 10.1101/gr.6.11.1029. [DOI] [PubMed] [Google Scholar]
  • 14.Cole MD. The myc oncogene: Its role in transformation and differentiation. Annu Rev Genet. 1986;20:361–384. doi: 10.1146/annurev.ge.20.120186.002045. [DOI] [PubMed] [Google Scholar]
  • 15.WHOLaboratory Manual for the Examination of Human Semen and Semen-Cervical Mucus Interaction. 4th ed. Cambridge, UK: The Press Syndicate of the University of Cambridge; 1999. pp. 19–23. [Google Scholar]
  • 16.Yunis JJ, Soreng AL, Bowe AE. Fragile sites are targets of diverse mutagens and carcinogens. Oncogene. 1987;1:59–69. [PubMed] [Google Scholar]
  • 17.Naz RK, Kumar G, Minhas BS. Expression and role of c-myc protooncogene in murine preimplantation embryonic development. J Assist Reprod Genet. 1994;11:208–216. doi: 10.1007/BF02211810. [DOI] [PubMed] [Google Scholar]
  • 18.Adamson ED. Oncogenes in development. Development. 1987;99:449–471. doi: 10.1242/dev.99.4.449. [DOI] [PubMed] [Google Scholar]
  • 19.Duffy MJ. Cellular oncogenes and suppressor genes as prognostic markers in cancer. Clin Biochem. 1993;26:439–447. doi: 10.1016/0009-9120(93)80007-h. [DOI] [PubMed] [Google Scholar]
  • 20.Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250:1684–1689. doi: 10.1126/science.2270482. [DOI] [PubMed] [Google Scholar]
  • 21.Black DM, Solomon E. The search for the familial breast/ovarian cancer gene. Trends Genet. 1993;9:22–26. doi: 10.1016/0168-9525(93)90068-S. [DOI] [PubMed] [Google Scholar]
  • 22.Narod SA, Feunteun J, Lynch HT, Watson P, Conway T, Lynch J, Lenoir GM. Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet. 1991;338:82–83. doi: 10.1016/0140-6736(91)90076-2. [DOI] [PubMed] [Google Scholar]
  • 23.Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers: Breast Cancer Linkage Consortium. Am J Hum Genet. 1995;56:265–271. [PMC free article] [PubMed] [Google Scholar]
  • 24.Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu O, Cochran C, Bennett LM, Ding W, Bell R, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugen-Strano A, Katcher H, Yakumo K, Ghulami Z, Shaffer D, Stone S, Bayer S, Wray C, Bogden R, Dayananth P, Ward J, Tonin P, Narod S, Bristow PK, Norris FH, Helvering L, Morrison P, Rosteck P, Lai M, Barrett JC, Lewis C, Neuhausen S, Cannon-Albright L, Goldgar D, Wiseman R, Kamb A, Skolnick MH. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71. doi: 10.1126/science.7545954. [DOI] [PubMed] [Google Scholar]
  • 25.Steichen-Gersdorf E, Gallion HH, Ford D, Girodet C, Easton DF, DiCioccio RA, Evans G, Ponder MA, Pye C, Mazoyer S, Noguchi T, Karengueven F, Sobol H, Hardouin A, Bignon Y-J, Piver MS, Smith SA, Ponder BAJ. Familial site-specific ovarian cancer is linked to BRCA1 on 17q12-21. Am J Hum Genet. 1994;55:870–875. [PMC free article] [PubMed] [Google Scholar]
  • 26.Gudas JM, Nguyen H, Li T, Cowan KH. Hormone dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 1995;55:4561–4565. [PubMed] [Google Scholar]
  • 27.Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers: Breast Cancer Linkage Consortium. Lancet. 1994;343:692–695. doi: 10.1016/s0140-6736(94)91578-4. [DOI] [PubMed] [Google Scholar]
  • 28.Belloc F, Jaloustre C, Dumain P, Lacombe F, Lenoble M, Boisseau MR. Effect of pentoxifylline on apoptosis of cultured cells. J Cardiovasc Pharmacol. 1995;25(Suppl2):s71–s74. doi: 10.1097/00005344-199500252-00015. [DOI] [PubMed] [Google Scholar]
  • 29.Kallioniemi A, Kallioniemi O-P, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
  • 30.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementaryDNA microarray. Science. 1995;270:467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  • 31.Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES