Skip to main content
Age logoLink to Age
. 1999 Apr;22(2):71–88. doi: 10.1007/s11357-999-0009-0

Recombination and its roles in DNA repair, cellular immortalization and cancer

Masood A Shammas 1,4, Robert J Shmookler Reis 1,2,3,4,
PMCID: PMC3455241  PMID: 23604399

Abstract

Genetic recombination is the creation of new gene combinations in a cell or gamete, which differ from those of progenitor cells or parental gametes. In eukaryotes, recombination may occur at mitosis or meiosis. Mitotic recombination plays an indispensable role in DNA repair, which presumably directed its early evolution; the multiplicity of recombination genes and pathways may be best understood in this context, although they have acquired important additional functions in generating diversity, both somatically (increasing the immune repertoire) and in germ line (facilitating evolution). Chromosomal homologous recombination and HsRad51 recombinase expression are increased in both immortal and preimmortal transformed cells, and may favor the occurrence of multiple oncogenic mutations. Tumorigenesis in vivo is frequently associated with karyotypic instability, locus-specific gene rearrangements, and loss of heterozygosity at tumor suppressor loci — all of which can be recombinationally mediated. Genetic defects which increase the rate of somatic mutation (several of which feature elevated recombination) are associated with early incidence and high risk for a variety of cancers. Moreover, carcinogenic agents appear to quite consistently stimulate homologous recombination. If cells with high recombination arise, either spontaneously or in response to “recombinogens,” and predispose to the development of cancer, what selective advantage could favor these cells prior to the occurrence of growth-promoting mutations? We propose that the augmentation of telomere-telomere recombination may provide just such an advantage, to hyper-recombinant cells within a population of telomerase-negative cells nearing their replicative (Hayflick) limit, by extending telomeres in some progeny cells and thus allowing their continued proliferation.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

References

  • 1.Almasan A., Linke S.P., Paulson T.G., Huang L., Wahl G.M. Genetic instability as a consequence of inappropriate entry into and progression through S-phase. Cancer Metas. Rev. 1995;14:59–73. doi: 10.1007/BF00690212. [DOI] [PubMed] [Google Scholar]
  • 2.Althaus F.R., Richter C. ADP-ribosylation of proteins: Enzymology and Biological Significance. Berlin: Springer-Verlag; 1987. [PubMed] [Google Scholar]
  • 3.Amstutz H., Munz P., Heyer W.D., Leupold U., Kohli J. Concerted evolution of tRNA genes: intergenic conversion among three unlinked serine tRNA genes in S. pombe. Cell. 1985;40:879–886. doi: 10.1016/0092-8674(85)90347-2. [DOI] [PubMed] [Google Scholar]
  • 4.Asai T., Sommer S., Bailone A., Kogoma T. Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. EMBO J. 1993;12:3287–3295. doi: 10.1002/j.1460-2075.1993.tb05998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Anderson R.A., Eliason S.L. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol. Cell. Biol. 1986;6:3246–3252. doi: 10.1128/mcb.6.9.3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ashby J., Tennant R.W. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the US NCI/NTP. Mutat.Res. 1988;204:17–115. doi: 10.1016/0165-1218(88)90114-0. [DOI] [PubMed] [Google Scholar]
  • 7.Avilion A.A., Piatyszek M.A., Gupta J., Shay J.W., Becchetti S., Greider C.W. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Research. 1996;56:645–650. [PubMed] [Google Scholar]
  • 8.Ayares D., Cherkuri L., Song K.-Y., Kucherlapati R. Sequence homology requirements for intermolecular recombination in mammalian cells. Proc. Natl. Acad. Sci. USA. 1986;83:5199–5203. doi: 10.1073/pnas.83.14.5199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Baker B.S., Carpenter T.C., Esposito M.S., Esposito R.E., Sandler L. The genetic control of meiosis. Ann. Rev. Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  • 10.Banin S., Moyal L., Shieh S., Taya Y., Anderson C.W., Chessa L., Smorodinsky N.I., Prives C., Reiss Y., Shiloh Y., Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
  • 11.Basile G., Aker M., Mortimer R.K. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol. Cell. Biol. 1992;12:3235–3246. doi: 10.1128/mcb.12.7.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Benson F.E., Stasiak A., West S.C. Purification and characterization of human Rad51 protein, an analogue of E. coli RecA. EMBO J. 1994;13:5764–5771. doi: 10.1002/j.1460-2075.1994.tb06914.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 93: 13931–13936, 1996. [DOI] [PMC free article] [PubMed]
  • 14.Bishop D.K., Park D., Xu L., Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 1992;69:439–456. doi: 10.1016/0092-8674(92)90446-j. [DOI] [PubMed] [Google Scholar]
  • 15.Bishop J.M. The molecular genetics of cancer. Science. 1987;253:305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  • 16.Blackburn E.H. Telomerases. Ann. Rev. Biochem. 1992;61:113–129. doi: 10.1146/annurev.bi.61.070192.000553. [DOI] [PubMed] [Google Scholar]
  • 17.Boissinot, S, Tan, Y, Shyue, SK, Schneider, H, Sampaio, I, Neiswanger, K, Hewett-Emmett, D, Li, WH: Origins and antiquity of X-linked triallelic color vision systems in new world monkeys. Proc. Natl. Acad. Sci. U S A, 95: 13749–13754, 1998. [DOI] [PMC free article] [PubMed]
  • 18.Bootsma D., Weeda G., Vermeulen W., van Vuuren H., Troelstra C., van der Spek P., Hoeijmakers J. Nucleotide excision repair syndromes: molecular basis and clinical symptoms. Phil. Trans. Roy. Soc. London B. 1995;347:75–81. doi: 10.1098/rstb.1995.0012. [DOI] [PubMed] [Google Scholar]
  • 19.Borowiec J.A., Hurwitz J. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc. Natl. Acad. Sci. USA. 1988;85:64–68. doi: 10.1073/pnas.85.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Borowiec J.A., Hurwitz J. Localized melting and structural changes in the SV40 origin of replication induced by T antigen. EMBO J. 1988;7:3149–3158. doi: 10.1002/j.1460-2075.1988.tb03182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Brinster R.L., Chen H.Y., Messing A., Van Dyke T., Levine A.J., Palmiter R.D. Transgenic mice harboring SV40 T antigen genes develop characteristic brain tumors. Cell. 1984;37:367–379. doi: 10.1016/0092-8674(84)90367-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Broccoli D., Smogorzewska A., Chong L., de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genetics. 1997;17:231–235. doi: 10.1038/ng1097-231. [DOI] [PubMed] [Google Scholar]
  • 23.Bryan T.M., Englezou A., Gupta J., Bacchetti S., Reddel R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Busser M.T., Lutz W.K. Stimulation of DNA synthesis in rat and mouse liver by various tumor promoters. Carcinogenesis. 1987;8:1433–1437. doi: 10.1093/carcin/8.10.1433. [DOI] [PubMed] [Google Scholar]
  • 25.Cairns J. The origin of human cancers. Nature. 1981;289:353–357. doi: 10.1038/289353a0. [DOI] [PubMed] [Google Scholar]
  • 26.Canman C.E., Lim D.S., Cimprich K.A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M.B., Siliciano J.D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–1679. doi: 10.1126/science.281.5383.1677. [DOI] [PubMed] [Google Scholar]
  • 27.Cavenee W.K., Dryja T.P., Phillips R.A., Benedict W.F., Godbout R., Gallie B.L., Murphree A.L., Strong L.C., White R.L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 1983;305:779–784. doi: 10.1038/305779a0. [DOI] [PubMed] [Google Scholar]
  • 28.Chen W., Jinks-Robertson S. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol. Cell. Biol. 1998;18:6525–6537. doi: 10.1128/mcb.18.11.6525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Cheng R.Z., Murano S., Kurz B.W., Shmookler Reis R.J. Homologous recombination is elevated in some Werner-iike syndromes but not during normal in vitro or in vivo senescence of human cells. Mutat. Res. 1991;237:259–269. doi: 10.1016/0921-8734(90)90008-f. [DOI] [PubMed] [Google Scholar]
  • 30.Cheng R.Z., Shammas M.A., Li J., Shmookler Reis R.J. Expression of SV40 large T antigen stimulates reversion of a chromosomal gene duplication in human cells. Exp. Cell Res. 1997;234:300–312. doi: 10.1006/excr.1997.3649. [DOI] [PubMed] [Google Scholar]
  • 31.Chou J.Y., Martin R.G. DNA infectivity and the induction of host DNA synthesis with temperature-sensitive mutants of simian virus 40. J. Virol. 1975;15:145–150. doi: 10.1128/jvi.15.1.145-150.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Counter C.M., Avilion A.A., LeFeuvre C.E., Stewart N.G., Greider C.W., Harley C.B., Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO, J. 1992;11:1921–1929. doi: 10.1002/j.1460-2075.1992.tb05245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Creissen D., Shall S. Regulation of DNA ligase activity by poly (ADP-ribose) Nature. 1982;296:271–272. doi: 10.1038/296271a0. [DOI] [PubMed] [Google Scholar]
  • 34.Davis M.M., Calame K., Early P.W., Livant D.L., Joho R., Weissman I.L., Hood L. An immunoglobulin heavy chain is formed by two recombinational events. Nature. 1980;283:733–739. doi: 10.1038/283733a0. [DOI] [PubMed] [Google Scholar]
  • 35.Day J.P., Marder B.A., Morgan W.F. Telomeres and their possible role in chromosome stabilization. Environ. Mol. Mutagen. 1993;22:245–249. doi: 10.1002/em.2850220411. [DOI] [PubMed] [Google Scholar]
  • 36.DeCaprio J.A., Ludlow J.W., Figge J., Shew J.Y., Huang C.M., Lee W.H., Marcilio E., Paucha E., Livingston D.M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1990;54:275–283. doi: 10.1016/0092-8674(88)90559-4. [DOI] [PubMed] [Google Scholar]
  • 37.Derbyshire M.K., Epstein L.H., Young C.S.H., Munz P.L., Fishel R. Nonhomologous recombination in human cells. Mol. Cell. Biol. 1994;14:156–169. doi: 10.1128/mcb.14.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Dhaliwal M.K., Satya-Prakash K.L., Davis P.C., Pathak S. High frequency of telomeric association in a family with multiple congenital neoplasia. In Vivo. 1994;8:1023–1026. [PubMed] [Google Scholar]
  • 39.Dickmanns A., Zeitvogel A., Simmersbach F., Weber R., Arthur A.K., Dehde S., Wildeman A. G., Fanning E. The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J. Virol. 1994;68:5496–5508. doi: 10.1128/jvi.68.9.5496-5508.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Digweed M. Human genetic instability syndromes: single gene defects with increased risk of cancer. Toxicol. Lett. 1993;67:259–281. doi: 10.1016/0378-4274(93)90061-2. [DOI] [PubMed] [Google Scholar]
  • 41.Dodson M., Dean F.B., Bullock P., Echols H., Hurwitz J. Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science. 1987;238:964–967. doi: 10.1126/science.2823389. [DOI] [PubMed] [Google Scholar]
  • 42.Dornreiter I., Hoss A., Arthur A.K., Fanning E. SV40 T-antigen binds directly to the large subunit of purified DNA polymerase. EMBO J. 1990;9:3329–3336. doi: 10.1002/j.1460-2075.1990.tb07533.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Drize O.B., Sokova O.I., Nikashina E.B., Shliankevich M.A., Shapot V.S. Possible role of T antigen in inducing chromosome aberrations in SV40 virus-transformed cells. Tsitologiia. 1985;27:76–82. [PubMed] [Google Scholar]
  • 44.Duesberg P.H., Goodrich D., Zhou R. Cancer genes by non-homologous recombination. Bas. Life Sci. 1991;57:197–211. doi: 10.1007/978-1-4684-5994-4_17. [DOI] [PubMed] [Google Scholar]
  • 45.Early P., Huang H., Davis M., Calame K., Hood L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D, and JH. Cell. 1980;19:981–992. doi: 10.1016/0092-8674(80)90089-6. [DOI] [PubMed] [Google Scholar]
  • 46.El-Deiry W.S., Harper J.W., O’Connor P.M., Velculescu V.E., Canman C.E., Jackman J., Pietenpol J.A., Burrell M., Hill D.E., Wang Y., Wiman K.G., Mercer W.E., Kastan M.B., Kohn K.W., Elledge S.J., Kinzler K.W., Vogelstein B. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994;54:1169–1174. [PubMed] [Google Scholar]
  • 47.Ellis N.A., Groden J., Ye T.Z., Straughen J., Lennon D.J., Ciocci S., Proytcheva M., German J. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995;83:655–666. doi: 10.1016/0092-8674(95)90105-1. [DOI] [PubMed] [Google Scholar]
  • 48.Esposito M.S. Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc. Natl. Acad. Sc. USA. 1978;75:4436–4440. doi: 10.1073/pnas.75.9.4436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Fabre F. Induced intragenic recombination in yeast can occur during the G1 mitotic phase. Nature. 1978;272:795–798. doi: 10.1038/272795a0. [DOI] [PubMed] [Google Scholar]
  • 50.Fanning E., Knippers R. Structure and function of simian virus 40 large tumor antigen. Ann. Rev. Biochem. 1992;61:55–85. doi: 10.1146/annurev.bi.61.070192.000415. [DOI] [PubMed] [Google Scholar]
  • 51.Farber E. The multistep nature of cancer development. Cancer Res. 1984;44:4217–4223. [PubMed] [Google Scholar]
  • 52.Feunteun J. Breast Cancer and genetic instability: the molecules behind the scenes. Mol. Med. Today. 1998;4:263–267. doi: 10.1016/s1357-4310(98)01262-3. [DOI] [PubMed] [Google Scholar]
  • 53.Finn G.K., Kurz B.W., Cheng R.Z., Shmookler Reis R.J. Homologous plasmid recombination is elevated in immortally transformed cells. Mol. Cell. Biol. 1989;9:4009–4017. doi: 10.1128/mcb.9.9.4009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Fitzgerald P.H., Morris C.M. Telomeric association of chromosomes in B-cell lymphoid leukemia. Hum Genet. 1984;67:385–390. doi: 10.1007/BF00291396. [DOI] [PubMed] [Google Scholar]
  • 55.Folger K.R., Thomas K., Capecchi M.R. Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol. 1985;5:59–69. doi: 10.1128/mcb.5.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Fornace A.J., Jr., Nebert D.W., Hollander M.C., Luethy J.D., Papathanasiou M., Fargnoli J., Holbrook N.J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 1989;9:4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Friedberg E.C., Siede W., Cooper A.J. In: The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Broach J. R., Pringle J. R., Jones E. W., editors. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1991. pp. 147–192. [Google Scholar]
  • 58.Fukuchi K., Martin G.M., Monnat R.J., Jr. Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A. 1989;86:5893–5897. doi: 10.1073/pnas.86.15.5893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Galli A., Schiestl R.H. On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol. Gen. Genet. 1995;248:301–310. doi: 10.1007/BF02191597. [DOI] [PubMed] [Google Scholar]
  • 60.Gee C.J., Harris H. Tumorigenicity of cells transformed by Simian virus 40 and of hybrids between such cells and normal diploid cells. J. Cell Sci. 1979;36:223–240. doi: 10.1242/jcs.36.1.223. [DOI] [PubMed] [Google Scholar]
  • 61.German J. Chromosome-breakage syndromes: different genes, different treatments, different cancers. Basic Life Sci. 1980;15:429–439. doi: 10.1007/978-1-4684-3842-0_30. [DOI] [PubMed] [Google Scholar]
  • 62.Gloor G.B., Nassif N.A., Johnson-Schlitz D.M., Preston C.R., Engels W.R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991;253:1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
  • 63.Goldstein S., Fordis C.M., Howard B.H. Enhanced transfection efficiency and improved cell survival after electroporation of G2/M-synchronized cells and treatment with sodium butyrate. Nucl. Acids Res. 1989;17:3959–3971. doi: 10.1093/nar/17.10.3959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Gollahon, LS, Kraus, E, Wu, TA, Yim, SO, Strong, LC, Shay, JW, and Tainsky, MA: Telomerase activity during spontaneous immortalization of Li-Fraumeni syndrome skin fibroblasts. Oncogene (check), 709–717, 1998. [DOI] [PubMed]
  • 65.Gorman S.D., Cristofalo V.J. Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J. Cell. Physiol. 1985;125:122–126. doi: 10.1002/jcp.1041250116. [DOI] [PubMed] [Google Scholar]
  • 66.Gray M.D., Shen J.C., Kamath-Loeb A.S., Blank A., Sopher B.L., Martin G.M., Oshima J., Loeb L.A. The Werner syndrome protein is a DNA helicase. Nature Genetics. 1997;17:100–103. doi: 10.1038/ng0997-100. [DOI] [PubMed] [Google Scholar]
  • 67.Grell R.F. Time of recombination in the Drosophila melanogaster oocyte: evidence from a temperature-sensitive recombination-deficient mutant. Proc. Natl. Acad. Sciences USA. 1978;75:3351–3354. doi: 10.1073/pnas.75.7.3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Griffith J., Bianchi A., de Lange T. TRF1 promotes parallel pairing of telomeric tracts in vitro. J. Mol. Biol. 1998;278:79–88. doi: 10.1006/jmbi.1998.1686. [DOI] [PubMed] [Google Scholar]
  • 69.Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., De Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–514. doi: 10.1016/s0092-8674(00)80760-6. [DOI] [PubMed] [Google Scholar]
  • 70.Gurney T., Gurney E.G. Spontaneous rearrangement of integrated simian virus 40 DNA in nine transformed rodent cell lines. J. Virol. 1989;63:165–174. doi: 10.1128/jvi.63.1.165-174.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Hanahan D. Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315:115–122. doi: 10.1038/315115a0. [DOI] [PubMed] [Google Scholar]
  • 72.Harley C.B., Futcher A.B., Greider C.W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460. doi: 10.1038/345458a0. [DOI] [PubMed] [Google Scholar]
  • 73.Hastie N.D., Allshire R.C. Human telomeres: fusion and interstitial sites. Trends Genet. 1989;5:326–331. doi: 10.1016/0168-9525(89)90137-6. [DOI] [PubMed] [Google Scholar]
  • 74.Hastie N.D., Dempster M., Dunlop M.G., Thompson A.M., Green D.K., Allshire R.C. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–868. doi: 10.1038/346866a0. [DOI] [PubMed] [Google Scholar]
  • 75.Hayflick L. The cellular basis for biological aging. In: Finch C.E., Hayflick L., editors. Handbook of the Biology of Aging. N.Y.: Van Nostrand Reinhold Co.; 1977. pp. 159–186. [Google Scholar]
  • 76.Heddle J.A. Implications for genetic toxicology of the chromosomal breakage syndromes. Mutat. Res. 1991;247:221–229. doi: 10.1016/0027-5107(91)90018-j. [DOI] [PubMed] [Google Scholar]
  • 77.Holliday R. A mechanism for gene conversion in fungi. Genet. Res. 1964;5:282–304. doi: 10.1017/S0016672308009476. [DOI] [PubMed] [Google Scholar]
  • 78.Hollstein M., Sidransky D., Vogelstein B., Harris C.C. p53 mutations in human cancers. Science. 1991;253:49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  • 79.Honma M., Zhang L.S., Hayashi M., Takeshita K., Nakagawa Y., Tanaka N., Sofuni T. Illegitimate recombination leading to allelic loss and unbalanced translocation in p53-mutated human lymphoblastoid cells. Mol. Cell. Biology. 1997;17:4774–4781. doi: 10.1128/mcb.17.8.4774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Horii A., Nakatsuru S., Miyoshi Y., Ichii S., Nagase H., Kato Y., Yanagisawa A., Nakamura Y. The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. Cancer Res. 1992;52:3231–3233. [PubMed] [Google Scholar]
  • 81.Hsieh P., Camerini-Otero C.S., Camerini-Otero R.D. Pairing of homologous DNA sequences by proteins: evidence of three-stranded DNA. Genes and Development. 1990;4:1951–1963. doi: 10.1101/gad.4.11.1951. [DOI] [PubMed] [Google Scholar]
  • 82.Ikeda H. DNA topoisomerase-mediated illegitimate recombination. Adv. Pharmacol. 1994;29A:147. doi: 10.1016/s1054-3589(08)60544-x. [DOI] [PubMed] [Google Scholar]
  • 83.Jackson A.L., Loeb L.A. The mutation rate and cancer. Genetics. 1998;148:1483–1490. doi: 10.1093/genetics/148.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Karow, JK, Chakraverty, RK, and Hickson, ID: The Bloom’s syndrome gene product is a 3′–5′ DNA helicase. J. Biol. Chem., 272: 30611–30614, 1997. [DOI] [PubMed]
  • 85.Kastan M.B., Onyekwere O., Sidransky D., Vogelstein B., Craig R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51:6304–6311. [PubMed] [Google Scholar]
  • 86.Kastan M.B., Zhan Q., El-Deiry W.S., Carrier F., Jacks T., Walsh W.V., Plunkett B.S., Vogelstein B., Fornace A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  • 87.Kawasaki I., Bae Y.S., Eki T., Kim Y., Ikeda H. Homologous recombination of monkey α-satellite repeats in an in vitro simian virus 40 replication system: possible association of recombination with DNA replication. Mol. Cell. Biol. 1994;14:4173–4182. doi: 10.1128/mcb.14.6.4173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Khandjian E.W., Matter J.M., Leonhard N., Weil R. Simian virus 40 and polyoma virus stimulate overall cellular RNA and protein synthesis. Proc. Natl. Acad. Sci. USA. 1980;77:1476–1481. doi: 10.1073/pnas.77.3.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Khanna K.K., Lavin M.F. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene. 1993;8:3307–3312. [PubMed] [Google Scholar]
  • 90.Khoobyarian N., Marczynska B. Cell immortalization: the role of viral genes and carcinogens. Virus Res. 1993;30:113–128. doi: 10.1016/0168-1702(93)90001-4. [DOI] [PubMed] [Google Scholar]
  • 91.Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
  • 92.Kogoma T. Recombination by replication. Cell. 1996;85:625–627. doi: 10.1016/s0092-8674(00)81229-5. [DOI] [PubMed] [Google Scholar]
  • 93.Kogoma T., Cadwell G.W., Barnard K.G., Asai T. The replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J. Bacter. 1996;178:1258–1264. doi: 10.1128/jb.178.5.1258-1264.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Molec. Biol. Rev. 1997;61:212–238. doi: 10.1128/mmbr.61.2.212-238.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Kojis T.L., Schreck R.R., Gatti R.A., Sparkes R.S. Tissue specificity of chromosomal rearrangements in Ataxia telangiectasia. Hum. Genet. 1989;83:347–352. doi: 10.1007/BF00291379. [DOI] [PubMed] [Google Scholar]
  • 96.Kojis T.L., Gatti R.A., Sparkes R.S. The cytogenetics of Ataxia telangiectasia. Cancer Genet. Cytogenet. 1991;56:143–156. doi: 10.1016/0165-4608(91)90164-p. [DOI] [PubMed] [Google Scholar]
  • 97.Kornberg, A, and Baker, T: DNA Replication, 2nd edition, 1992; W.H. Freeman & Co.
  • 98.Kruse C.A., Varella-Garcia M., Kleinschmidt-Demasters B.K., Owens G.C., Spector E.B., Fakhrai H., Savelieva E., Liang B.C. Receptor expression, cytogenetic, and molecular analysis of six continuous human glioma cell lines. In Vitro Cell. Devel. Biol. Animal. 1998;34:455–462. doi: 10.1007/s11626-998-0078-x. [DOI] [PubMed] [Google Scholar]
  • 99.Kuchta R.D., Willhelm L. Inhibition of DNA primase by 9-beta-D-arabinofuranosyladenosine triphosphate. Biochemistry. 1991;30:797–803. doi: 10.1021/bi00217a033. [DOI] [PubMed] [Google Scholar]
  • 100.Kuerbitz S.J., Plunkett B.S., Walsh W.V., Kastan M.B. Wild type p53 is a cell cycle check point determinant following irradiation. Proc. Natl. Acad. Sc. USA. 1992;89:7491–7495. doi: 10.1073/pnas.89.16.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Lakshmi M.S., Sherbet G.V. Genetic recombination in human melanoma and astrocytoma cell lines involves oncogenes and growth factor genes. Clin. Expl. Metastasis. 1990;8:75–87. doi: 10.1007/BF00155594. [DOI] [PubMed] [Google Scholar]
  • 102.Larsen C.J. The BCL2 gene, prototype of a gene family that controls programmed cell death (apoptosis) Annales de Genetique. 1994;37:121–134. [PubMed] [Google Scholar]
  • 103.Leder P., Battey J., Lenoir G., Moulding C., Murphy W., Potter H., Stewart T., Taub R. Translocations among antibody genes in human cancer. Science. 1983;222:765–771. doi: 10.1126/science.6356357. [DOI] [PubMed] [Google Scholar]
  • 104.Lee W.C., Testa J.R. Somatic genetic alterations in human malignant mesothelioma. Int. J. Oncol. 1999;14:181–188. [PubMed] [Google Scholar]
  • 105.Lemaire R., Flipo R.M., Monte D., Dupressoir T., Duquesnoy B., Cesbron J.Y., Janin A., Capron A., Lafyatis R. Synovial fibroblast-like cell transfection with the SV40 large T antigen induces a transformed phenotype and permits transient tumor formation in immunodeficient mice. J. Rheumatol. 1994;21:1409–1419. [PubMed] [Google Scholar]
  • 106.Lengauer C., Kinzler K.W., Vogelstein B. Genetic instabilities in colorectal cancers. Nature. 1997;386:623–627. doi: 10.1038/386623a0. [DOI] [PubMed] [Google Scholar]
  • 107.Lengauer C., Kinzler K.W., Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–649. doi: 10.1038/25292. [DOI] [PubMed] [Google Scholar]
  • 108.Li J., Ayyadevara R., Shmookler Reis R.J. Carcinogens stimulate intrach romosomal homologous recombination at an endogenous locus in human diploid fibroblasts. Mutation Res. 1997;385:173–193. doi: 10.1016/s0921-8777(97)00054-2. [DOI] [PubMed] [Google Scholar]
  • 109.Liskay R.M., Letsou A., Stachelek J.L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987;115:161–167. doi: 10.1093/genetics/115.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Liu J., Wolf B. Co-existence of somatic hypermutation and gene conversion in hypervariable regions of single Ig kappa clones. Immunology. 1998;95:291–301. doi: 10.1046/j.1365-2567.1998.00590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Loeb L.A. Transient expression of a mutator phenotype in cancer cells. Science. 1997;277:1449–1450. doi: 10.1126/science.277.5331.1449. [DOI] [PubMed] [Google Scholar]
  • 112.Loeb L.A. Cancercells exhibita mutator phenotype. Adv Cancer Res. 1998;72:25–56. doi: 10.1016/s0065-230x(08)60699-5. [DOI] [PubMed] [Google Scholar]
  • 113.Loft S., Poulsen H.E. Cancer risk and oxidative DNA damage in man. J Molec Med. 1996;74:297–312. doi: 10.1007/BF00207507. [DOI] [PubMed] [Google Scholar]
  • 114.Lu X., Lane D.P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes. Cell. 1993;75:765–778. doi: 10.1016/0092-8674(93)90496-d. [DOI] [PubMed] [Google Scholar]
  • 115.Luisi-Deluca C., Porter R.D., Taylor W.D. Stimulation of recombination between homologous sequences on plasmid DNA and chromosomal DNA in Escherichia coli by N-acetoxy-2-acetyl-aminofluorene. Proc. Natl. Acad. Sci. USA. 1984;81:2831–2835. doi: 10.1073/pnas.81.9.2831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Lynch H.T., Lynch J.F. Genetics of colonic cancer. Digestion. 1998;59:481–492. doi: 10.1159/000007525. [DOI] [PubMed] [Google Scholar]
  • 117.Mansour S.L., Thomas K.R., Capecchi M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988;336:348–352. doi: 10.1038/336348a0. [DOI] [PubMed] [Google Scholar]
  • 118.Mansour S.L., Goddard J.M., Capecchi M.R. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development. 1993;117:13–28. doi: 10.1242/dev.117.1.13. [DOI] [PubMed] [Google Scholar]
  • 119.Mason J.M., Langenbach R., Shelby M.D., Zeiger E., Tennant R.W. Ability of short-term tests to predict carcinogenesis in rodents. Annu. Rev. Pharmacol. Toxicol. 1990;30:149–168. doi: 10.1146/annurev.pa.30.040190.001053. [DOI] [PubMed] [Google Scholar]
  • 120.Mayne L.V., Priestley A., James M.R., Burke J.F. Efficient immortalization and morphological transformation of human fibroblasts by transfection with SV40 DNA linked to a dominant marker. Exper. Cell Res. 1986;162:530–538. doi: 10.1016/0014-4827(86)90356-3. [DOI] [PubMed] [Google Scholar]
  • 121.Mekeel K.L., Tang W., Kachnic L.A., Luo C.M., DeFrank J.S., Powell S.N. Inactivation of p53 results in high rates of homologous recombination. Oncogene. 1997;14:1847–1857. doi: 10.1038/sj.onc.1201143. [DOI] [PubMed] [Google Scholar]
  • 122.Meselson M.S., Radding C.M. A general model for genetic recombination. Proc. Natl. Acad. Sciences USA. 1975;72:358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Meyn M.S. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science. 1993;260:1327–1330. doi: 10.1126/science.8493577. [DOI] [PubMed] [Google Scholar]
  • 124.Miki H., Ohmori M., Perantoni A.O., Enomoto T. K-ras activation in gastric epithelial tumors in japanese. Cancer Lett. 1991;58:107–113. doi: 10.1016/0304-3835(91)90031-c. [DOI] [PubMed] [Google Scholar]
  • 125.Mills D. 8-hydroxyquinoline inhibition of DNA synthesis and intragenic recombination during yeast meiosis. Mol. and Gen. Genet. 1978;162:221–228. doi: 10.1007/BF00267879. [DOI] [PubMed] [Google Scholar]
  • 126.Morgan A.R., Severini A. Interconversion of replication and recombination structures: Implications for terminal repeats and concatemers. J. Theor. Biol. 1990;144:195–202. doi: 10.1016/s0022-5193(05)80318-2. [DOI] [PubMed] [Google Scholar]
  • 127.Murakami, Y, and Hurwitz, J: Functional interactions between SV40 T antigen and other replication proteins at the replication fork. J. Biol. Chem., 268: 11008–11017, 1993. [PubMed]
  • 128.Murakami, Y, and Hurwitz, J: DNA polymerase α stimulates the ATP-dependent binding of simian virus tumor T antigen to the SV40 origin of replication. J. Biol. Chem., 268: 11018–11027, 1993. [PubMed]
  • 129.Nakamura Y. ATM: the p53 booster. Nature Medicine. 1998;4:1231–1232. doi: 10.1038/3207. [DOI] [PubMed] [Google Scholar]
  • 130.Nassif N., Engels W. DNA homology requirements for mitotic gap repair in Drosophila. Proc. Natl. Acad. Sci. USA. 1993;90:1262–1266. doi: 10.1073/pnas.90.4.1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Neiman P.E., Hartwell L.H. Malignant instability. New Biologist. 1991;3:347–351. [PubMed] [Google Scholar]
  • 132.Nicolaides N.C., Papadopoulos N., Liu B., Wei Y.F., Carter K.C., Ruben S.M., Rosen C.A., Haseltine W.A., Fleischmann R.D., Fraser C.M., et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371:75–80. doi: 10.1038/371075a0. [DOI] [PubMed] [Google Scholar]
  • 133.Nikitin A.G., Shmookler Reis R.J. Role of transposable elements in age-related genomic instability. Genet. Res., Camb. 1997;69:183–195. doi: 10.1017/s0016672397002772. [DOI] [PubMed] [Google Scholar]
  • 134.Oettinger M.A., Schatz D.A., Gorka C., Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990;248:1517–1523. doi: 10.1126/science.2360047. [DOI] [PubMed] [Google Scholar]
  • 135.Ogino H., Nakabayashi K., Suzuki M., Takahashi E., Fujii M., Suzuki T., Ayusawa D. Release of telomeric DNA from chromosomes in immortal human cells lacking telomerase activity. Bioch. Biophy. Res. Comm. 1998;248:223–227. doi: 10.1006/bbrc.1998.8875. [DOI] [PubMed] [Google Scholar]
  • 136.Orntoft T.F., Wolf H. Molecular alterations in bladder cancer. Urol. Res. 1998;26:223–233. doi: 10.1007/s002400050050. [DOI] [PubMed] [Google Scholar]
  • 137.Oshima J., Steinmann K., Campisi J., Schlegel R. Modulation of cell growth, p34cdc2 and cyclin A levels by SV40 large T antigen. Oncogene. 1993;8:2987–2993. [PubMed] [Google Scholar]
  • 138.Pathak S., Dave B.J., Gagos S. Chromosome alterations in cancer development and apoptosis. In Vivo. 1994;8:843–850. [PubMed] [Google Scholar]
  • 139.Phear G., Bhattacharyya N.P., Meuth M. Loss of heterozygosity and base substitution at the APRT locus in mismatch-repair-proficient and-deficient colorectal carcinoma cells. Mol. Cell. Biol. 1996;16:6516–6523. doi: 10.1128/mcb.16.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Radman M., Jeggo P., Wagner R. Chromosomal rearrangement and carcinogenesis. Mut. Res. 1982;98:249–264. doi: 10.1016/0165-1110(82)90035-5. [DOI] [PubMed] [Google Scholar]
  • 141.Raju N.B. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 1980;23:208–223. [PubMed] [Google Scholar]
  • 142.Ray F.A., Peabody D.S., Cooper J.L., Cram L.S., Kraemer P.M. SV40 T antigen alone drives karyotypic instability that precedes neoplastic transformation of human diploid fibroblasts. J. Cell. Biochem. 1990;42:13–31. doi: 10.1002/jcb.240420103. [DOI] [PubMed] [Google Scholar]
  • 143.Ray S., Anderson M.E., Loeber G., Mcvey D., Tegtmeyer P. Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen. J. Virol. 1992;66:6509–6516. doi: 10.1128/jvi.66.11.6509-6516.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Ray S., Anderson M.E., Tegtmeyer P. Differential interaction of temperature-sensitive SV40 T antigens with tumor suppressors pRb and p53. J. Virol. 1996;70:7224–7227. doi: 10.1128/jvi.70.10.7224-7227.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Razin S., Pfendt E.A., Matsumura T., Hayflick L. Comparison by autoradiography of macromolecular biosynthesis in “young” and “old” human diploid fibroblast cultures. Mech. Aging Dev. 1977;6:379–384. doi: 10.1016/0047-6374(77)90039-2. [DOI] [PubMed] [Google Scholar]
  • 146.Resnick M.A., Skaanild M., Nilsson T.T. Lack of DNA homology in a pair of divergent chromosomes greatly sensitizes them to loss by DNA damage. Proc. Natl. Acad. Sci. USA. 1989;86:2276–2280. doi: 10.1073/pnas.86.7.2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Richter C., Park J.W., Ames B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA. 1988;85:6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Roca A.I., Cox M.M. The RecA protein: structure and function. Crit. Rev. Bioch. Mol. Biol. 1990;25:415–456. doi: 10.3109/10409239009090617. [DOI] [PubMed] [Google Scholar]
  • 149.Rubnitz J., Subramani S. Extrachromosomal and chromosomal gene conversion in mammalian cells. Mol. Cell. Biol. 1986;6:1608–1614. doi: 10.1128/mcb.6.5.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Rubnitz J., Subramani S. Correction of deletions in mammalian cells by gene conversion. Somat. Cell Mol. Genet. 1987;13:183–190. doi: 10.1007/BF01535201. [DOI] [PubMed] [Google Scholar]
  • 151.Sakano H., Maki R., Kurosawa Y., Roeder W., Tonegawa S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy chain genes. Nature. 1980;286:676–683. doi: 10.1038/286676a0. [DOI] [PubMed] [Google Scholar]
  • 152.Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D.A., Smith S., Uziel T., Sfez S., Ashkenazi M., Pecker I., Frydman M., Harnick R., Patanjali S.R., Simmons A., Clines G.A., Sartiel A., Gatti R.A., Chessa L., Sanal O., Lavin M.F., Jaspers N.G.J., Taylor M.R., Arlett C.F., Miki T., Weissman S.M., Lovett M., Collins F.S., Shiloh Y. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  • 153.Schiedner G., Wessel R., Scheffner M., Stahl H. Renaturation and DNA looping promoted by the SV40 large tumor antigen. EMBO J. 1990;9:37–43. doi: 10.1002/j.1460-2075.1990.tb07485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Scully R., Chen J., Plug A., Xiao Y., Weaver D., Feunteun J., Ashley T., Livingston D.M. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997;88:265–275. doi: 10.1016/s0092-8674(00)81847-4. [DOI] [PubMed] [Google Scholar]
  • 155.Sedivy J.M., Sharp P.A. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA. 1989;86:227–231. doi: 10.1073/pnas.86.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Sengstag C. The role of mitotic recombination in carcinogenesis. Crit. Rev. Toxicol. 1994;24:323–353. doi: 10.3109/10408449409017922. [DOI] [PubMed] [Google Scholar]
  • 157.Shammas, MA, Simmons, C, Corey, DR, and Shmookler Reis, RJ: Telomerase inhibition by peptide nucleic acids reverses “immortality” of transformed human cells. Oncogene (in press, 1999) [DOI] [PubMed]
  • 158.Shay J.W., Bacchetti S. A survey of telomerase activity in human cancer. Euro. J. Cancer. 1997;33:787–791. doi: 10.1016/S0959-8049(97)00062-2. [DOI] [PubMed] [Google Scholar]
  • 159.Shay J.W., Wright W.E. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T antigen. Exp. Cell Res. 1989;184:109–118. doi: 10.1016/0014-4827(89)90369-8. [DOI] [PubMed] [Google Scholar]
  • 160.Shay J.W., Wright W.E. The reactivation of telomerase activity in cancer progression. Trends in Genetics. 1996;12:129–131. doi: 10.1016/0168-9525(96)30018-8. [DOI] [PubMed] [Google Scholar]
  • 161.Schiestl R.H., Gietz R.D., Mehta R.D., Hastings P.J. Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis. 1989;10:1445–1455. doi: 10.1093/carcin/10.8.1445. [DOI] [PubMed] [Google Scholar]
  • 162.Shmookler Reis R.J., Goldstein S. Loss of reiterated DNA sequences during serial passage of human diploid fibroblasts. Cell. 1980;21:739–749. doi: 10.1016/0092-8674(80)90437-7. [DOI] [PubMed] [Google Scholar]
  • 163.Smith G.P. Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symposia on Quantitative Biology. 1974;38:507–513. doi: 10.1101/sqb.1974.038.01.055. [DOI] [PubMed] [Google Scholar]
  • 164.Smith G.P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191:528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  • 165.Smith GR: Hotspots of homologous recombination. Experientia, 234–241, 1994. [DOI] [PubMed]
  • 166.Smith S., de Lange T. TRF1, a mammalian telomeric protein. Trends in Genetics. 1997;13:21–26. doi: 10.1016/s0168-9525(96)10052-4. [DOI] [PubMed] [Google Scholar]
  • 167.Solomon E., Barrow J., Goddard A.D. Chromosome aberrations and cancer. Science. 1991;254:1153–1160. doi: 10.1126/science.1957167. [DOI] [PubMed] [Google Scholar]
  • 168.Srivastava A., Norris J.S., Shmookler Reis R.J., Goldstein S. c-Ha-ras-1 proto-oncogene amplification and overexpression during the limited replicative life span of normal human fibroblasts. J. Biol. Chem. 1985;260:6404–6409. [PubMed] [Google Scholar]
  • 169.Stewart N., Bacchetti S. Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology. 1991;80:49–57. doi: 10.1016/0042-6822(91)90008-y. [DOI] [PubMed] [Google Scholar]
  • 170.Stürzbecher H.-W., Donzelmnn B., Henning W., et al. P53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 1996;15:1992–2002. [PMC free article] [PubMed] [Google Scholar]
  • 171.Super H.G., Strissel P.L., Sobulo O.M., Burian D., Reshmi S.C., Roe B., Zeleznik-Le N.J., Diaz M.O., Rowley J.D. Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia. Genes Chromo. Cancer. 1997;20:185–195. [PubMed] [Google Scholar]
  • 172.Suzuki H., Takahashi T., Kuroishi T., Suyama M., Ariyoshi Y., Takahashi T., Ueda R. p53 mutations in non-small cell lung cancer in Japan: association between mutations and smoking. Cancer Res. 1992;52:734–736. [PubMed] [Google Scholar]
  • 173.Sweezy M.A., Fishel R. Multiple pathways leading to genomic instability and tumorigenesis. Ann. N. Y. Acad. Sci. 1994;726:165–177. doi: 10.1111/j.1749-6632.1994.tb52810.x. [DOI] [PubMed] [Google Scholar]
  • 174.Szostak J.W., Orr-Weaver T.L., Rothstein R.J., Stahl F.W. The double-strand-break repair model for recombination. Cell. 1983;33:25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  • 175.Takita J., Hayashi Y., Yokota J. Loss of heterozygosity in neuroblastomas — an overview. Eur J Cancer. 1997;33:1971–1973. doi: 10.1016/s0959-8049(97)00292-x. [DOI] [PubMed] [Google Scholar]
  • 176.Taylor A.F., Schultz D.W., Ponticelli A.S., Smith G.R. RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell. 1985;41:153–163. doi: 10.1016/0092-8674(85)90070-4. [DOI] [PubMed] [Google Scholar]
  • 177.Tegtmeyer P. Function of simian virus 40 gene A in transforming infection. J. Virol. 1975;15:613–618. doi: 10.1128/jvi.15.3.613-618.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Tegtmeyer P. Genetics of SV40 and polyoma virus. In: Tooze J., editor. Molecular Biology of Tumor Viruses, Part 2: DNA Tumor Viruses. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1980. pp. 7–337. [Google Scholar]
  • 179.Tlsty T.D. Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc. Natl. Acad. Sci. 1990;87:3123–3136. doi: 10.1073/pnas.87.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Tsancheva M. The molecular biology and genetics of colorectal carcinoma. Khirurgiia. 1997;50:40–44. [PubMed] [Google Scholar]
  • 181.Tsuji Y., Ide T., Ishibashi S. Correlation between the presence of T-antigen and the reinitiation of host DNA synthesis in senescent human diploid fibroblasts after SV40 infection. Exp. Cell Res. 1983;144:165–169. doi: 10.1016/0014-4827(83)90450-0. [DOI] [PubMed] [Google Scholar]
  • 182.van Gool A.J., Verhage R., Swagemakers S.M., van de Putte P., Brouwer J., Troelstra C., Bootsma D., Hoeijmakers J.H. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994;13:5361–5369. doi: 10.1002/j.1460-2075.1994.tb06871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385:740–743. doi: 10.1038/385740a0. [DOI] [PubMed] [Google Scholar]
  • 184.van Steensel B., Smororzewska A., de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401–413. doi: 10.1016/s0092-8674(00)80932-0. [DOI] [PubMed] [Google Scholar]
  • 185.Vogelstein B., Fearon E.R., Kern S.E., Hamilton S.R., Preisinger A.C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989;244:207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  • 186.Voloshin O.N., Wang L., Camerini-Otero R.D. Homologous DNA pairing promoted by a 20-amino acid peptide derived from RecA. Science. 1996;272:868–872. doi: 10.1126/science.272.5263.868. [DOI] [PubMed] [Google Scholar]
  • 187.Wake C.T., Gudewicz T., Porter T., White A., Wilson J.H. How damaged is the biologically active subpopulation of transfected DNA? Mol. Cell. Biol. 1984;4:387–398. doi: 10.1128/mcb.4.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Waldman B.C., Waldman A.S. Illegitimate and homologous recombination in mammalian cells: differential sensitivity to an inhibitor of poly(ADP-ribosylation) Nuc. Acids Res. 1990;18:5981–5988. doi: 10.1093/nar/18.20.5981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Wang S.S., Zakian V.A. Telomere-telomere recombination provides an express pathway for telomere acquisition. Nature. 1990;345:456–458. doi: 10.1038/345456a0. [DOI] [PubMed] [Google Scholar]
  • 190.Weinberg R.A. The genetic origins of human cancer. Cancer. 1988;61:1963–1968. doi: 10.1002/1097-0142(19880515)61:10<1963::aid-cncr2820611005>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  • 191.Weinberg R.A. The molecular basis of oncogenes and tumor suppressor genes. Ann N Y Acad Sci. 1995;758:331–338. doi: 10.1111/j.1749-6632.1995.tb24838.x. [DOI] [PubMed] [Google Scholar]
  • 192.West S.C. The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell. 1994;76:9–15. doi: 10.1016/0092-8674(94)90168-6. [DOI] [PubMed] [Google Scholar]
  • 193.Whelden, Cho J., Khalsa G.J., Nickoloff J.A. Gene-conversion tract directionality is influenced by the chromosome environment. Curr. Genet. 1998;34:269–279. doi: 10.1007/s002940050396. [DOI] [PubMed] [Google Scholar]
  • 194.Wichman H.A., Van Den Bussche R.A., Hamilton M.J., Baker R.J. Transposable elements and the evolution of genome organization in mammals. Genetica. 1992;86:287–293. doi: 10.1007/BF00133727. [DOI] [PubMed] [Google Scholar]
  • 195.Wiener F., Klein G., Harris H. Tumorigenicity of L cell derivatives and hybrid cells derived from them. Cancer Lett. Mar. 1976;1:207–210. doi: 10.1016/s0304-3835(75)96836-6. [DOI] [PubMed] [Google Scholar]
  • 196.Windle B., Draper B.W., Yin Y.X., O’Gorman S., Wahl G.M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes & Development. 1991;5:160–174. doi: 10.1101/gad.5.2.160. [DOI] [PubMed] [Google Scholar]
  • 197.Wong E.A., Capecchi M.R. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell. Biol. 1987;7:2294–2295. doi: 10.1128/mcb.7.6.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Wright W.E., Pereira, Smith O.M., Shay J.W. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol. Cell Biol. 1989;9:3088–3092. doi: 10.1128/mcb.9.7.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Wright W.E., Shay J.W. The two-stage mechanism controlling cellular senescence and immortalization. Exper. Gerontol. 1992;27:383–389. doi: 10.1016/0531-5565(92)90069-c. [DOI] [PubMed] [Google Scholar]
  • 200.Xia S.J., Shammas M.A., Shmookler Reis R.J. Reduced telomere length in ataxia-telangiectasia fibroblasts. Mutat. Res. 1996;364:1–11. doi: 10.1016/0921-8777(96)00015-8. [DOI] [PubMed] [Google Scholar]
  • 201.Xia S., Shammas M.A., Shmookler Reis R.J. Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase. Mol. Cell. Biol. 1997;17:7151–7158. doi: 10.1128/mcb.17.12.7151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Xiong Y., Zhang H., Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 1993;7:1572–1583. doi: 10.1101/gad.7.8.1572. [DOI] [PubMed] [Google Scholar]
  • 203.Xiong Y., Hannon G.J., Zhang H., Casso D., Kobayashi R., Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993;366:701–704. doi: 10.1038/366701a0. [DOI] [PubMed] [Google Scholar]
  • 204.Yamada Y., Yoshida T., Hayashi K., Sekiya T., Yokota J., Hirohashi S., Nakatani K., Nakano H., Sugimura T., Terada M. p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases. Cancer Res. 1991;51:5800–5805. [PubMed] [Google Scholar]
  • 205.Yamaguchi-Iwai Y., Sonoda E., Buerstedde J.M., Bezzubova O., Morrison C., Takata M., Shinohara A., Takeda S. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell. Biol. 1998;18:6430–6435. doi: 10.1128/mcb.18.11.6430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Yoshimura Y., Morita T., Yamamoto A., Matsushiro A. Cloning and sequence of the human RecA like gene cDNA. Nucleic Acids Res. 1993;21:1665. doi: 10.1093/nar/21.7.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Yunis J.J. Multiple recurrent genomic rearrangements and fragile sites in human cancer. Somat. Cell Molec. Genet. 1987;13:397–403. doi: 10.1007/BF01534938. [DOI] [PubMed] [Google Scholar]
  • 208.Yusof Y.A., Edwards A.M. Stimulation of DNA synthesis in primary rat hepatocyte cultures by liver tumor promoters: interactions with other growth factors. Carcinogenesis. 1990;11:761–770. doi: 10.1093/carcin/11.5.761. [DOI] [PubMed] [Google Scholar]
  • 209.Zakian V.A. Structure and function of telomeres. Annu. Rev. Genet. 1989;23:579–604. doi: 10.1146/annurev.ge.23.120189.003051. [DOI] [PubMed] [Google Scholar]
  • 210.Zhan Q., Fan S., Bae I., Guillouf C., Liebermann D.A., O’Connor P.M., Fornace A.J., Jr. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene. 1994;9:3743–3751. [PubMed] [Google Scholar]
  • 211.Zhang L.H., Jenssen D. Studies on intrachromosomal recombination in SP5/V79 Chinese hamster ceils upon exposure to different agents related to carcinogenesis. Carcinogenesis. 1994;15:2303–2310. doi: 10.1093/carcin/15.10.2303. [DOI] [PubMed] [Google Scholar]
  • 212.Zhu J., Abate M., Rice P.W., Cole C.N. The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind p53. J. Virol. 1991;65:6872–6880. doi: 10.1128/jvi.65.12.6872-6880.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Zucman-Rossi J, Legoix P, Victor JM, Lopez B, Thomas G: Chromosome translocation based on illegitimate recombination in human tumors. Proc Natl Acad Sci USA, 95: 11786–11791, 1998. [DOI] [PMC free article] [PubMed]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES