Skip to main content
Age logoLink to Age
. 1999 Jan;22(1):9–17. doi: 10.1007/s11357-999-0002-7

The effects of aging and oxidative stress on psychomotor and cognitive behavior

Barbara Shukitt-Hale 1
PMCID: PMC3455411  PMID: 23604386

Abstract

Decrements in motor and cognitive function occur in aging, possibly due to oxidative stress-induced damage to the brain. Declines in antioxidant defense mechanisms have been postulated as a causative factor in these age-related decrements, however a clear link between oxidative stress (OS) and behavioral changes in aging has yet to be established. This review shows that age-validated psychomotor and cognitive tests are sensitive to behavioral deficits under different models of OS, including: 1) decreasing OS protection by depleting glutathione and then increasing the OS with dopamine; 2) 100% oxygen exposure; and 3) radiation. Furthermore, interventions that reduce OS result in concurrent improvements in age-associated behavioral deficits. Therefore, age-related changes in behavior may result from an inability to cope with OS that occurs throughout the life-span.

Full Text

The Full Text of this article is available as a PDF (771.5 KB).

References

  1. Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes C.A. Aging and the physiology of spatial memory. Neurobiol. Aging. 1988;9:563–568. doi: 10.1016/s0197-4580(88)80114-3. [DOI] [PubMed] [Google Scholar]
  3. Bartus R.T., Dean R.L., Beer B., Lippa A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–417. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  4. Bickford P. Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993;620:133–138. doi: 10.1016/0006-8993(93)90279-V. [DOI] [PubMed] [Google Scholar]
  5. Bickford P.C., Chadman K., Taglialatela G., Shukitt-Hale B., Prior R.L., Cao G., Joseph J.A. Dietary strawberry supplementation protects against the age-accelerated CNS effects of oxidative stress. FASEB J. 1997;11:A176. [Google Scholar]
  6. Bickford P., Heron C., Young D.A., Gerhardt G.A., de la Garza R. Impaired acquisition of novel locomotor tasks in aged and norepinephrine-depleted F344 rats. Neurobiol. Aging. 1992;13:475–481. doi: 10.1016/0197-4580(92)90075-9. [DOI] [PubMed] [Google Scholar]
  7. Brandeis R., Brandys Y., Yehuda S. The use of the Morris water maze in the study of memory and learning. Intern. J. Neurosci. 1989;48:29–69. doi: 10.3109/00207458909002151. [DOI] [PubMed] [Google Scholar]
  8. Brandeis R., Dachir S., Sapir M., Levy A., Fisher A. Reversal of age-related cognitive impairments by an M1 cholinergic agonist, AF102B. Pharmacol. Biochem. Behav. 1990;36:89–95. doi: 10.1016/0091-3057(90)90131-Z. [DOI] [PubMed] [Google Scholar]
  9. Carlsson A., Winblad B. Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J. Neural Trans. 1976;38:271–301. doi: 10.1007/BF01249444. [DOI] [PubMed] [Google Scholar]
  10. Carney J.M., Carney A.M. Role of protein oxidation in aging and in age-associated neurodegenerative diseases. Life Sci. 1994;55:2097–2103. doi: 10.1016/0024-3205(94)00390-4. [DOI] [PubMed] [Google Scholar]
  11. Carney J.M., Starke-Reed P.E., Oliver C.N., Landum R.W., Cheng M.S., Wu J.F., Floyd R.A. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc. Natl. Acad. Sci. USA. 1991;88:3633–3636. doi: 10.1073/pnas.88.9.3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen T.S., Richie J.P., Lang C.A. The effect of aging on glutathione and cysteine levels in different regions of the mouse brain. Proc. Soc. Exp. Biol. Med. 1989;190:399–402. doi: 10.3181/00379727-190-42879. [DOI] [PubMed] [Google Scholar]
  13. Dean R.L., Scozzafava J., Goas J.A., Regan B., Beer B., Bartus R.T. Age-related differences in behavior across the life span of the C57BL/6J mouse. Exp. Aging Res. 1981;7:427–451. doi: 10.1080/03610738108259823. [DOI] [PubMed] [Google Scholar]
  14. Devan B.D., Goad E.H., Petri H.L. Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiol. Learn. Memory. 1996;66:305–323. doi: 10.1006/nlme.1996.0072. [DOI] [PubMed] [Google Scholar]
  15. Fornstedt B., Pileblad E., Carlsson A. In vivo autoxidation of dopamine in guinea pig striatum increases with age. J. Neurochem. 1990;55:655–659. doi: 10.1111/j.1471-4159.1990.tb04183.x. [DOI] [PubMed] [Google Scholar]
  16. Forster M.J., Dubey A., Dawson K.M., Stutts W.A., Lal H., Sohal R.S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. USA. 1996;93:4765–4769. doi: 10.1073/pnas.93.10.4765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frick K.M., Baxter M.G., Markowska A.L., Olton D.S., Price D.L. Age-related spatial reference and working memory deficits assessed in the water maze. Neurobiol. Aging. 1995;16:149–160. doi: 10.1016/0197-4580(94)00155-3. [DOI] [PubMed] [Google Scholar]
  18. Gage F.H., Dunnett S.B., Bjorklund A. Spatial learning and motor deficits in aged rats. Neurobiol. Aging. 1984;5:43–48. doi: 10.1016/0197-4580(84)90084-8. [DOI] [PubMed] [Google Scholar]
  19. Gallagher M., Pelleymounter M.A. Spatial learning deficits in old rats: A model for memory decline in the aged. Neurobiol. Aging. 1988;9:549–556. doi: 10.1016/s0197-4580(88)80112-x. [DOI] [PubMed] [Google Scholar]
  20. Griffith, OW: Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem., 257:13704–13712, 1982. [PubMed]
  21. Halliwell B. Free radicals and antioxidants: A personal view. Nutr. Rev. 1994;52:253–265. doi: 10.1111/j.1753-4887.1994.tb01453.x. [DOI] [PubMed] [Google Scholar]
  22. Harman D. The aging process. Proc. Natl. Acad. Sci. USA. 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Harman D. Role of free radicals in aging and disease. Ann. N.Y Acad. Sci. 1992;673:126–141. doi: 10.1111/j.1749-6632.1992.tb27444.x. [DOI] [PubMed] [Google Scholar]
  24. Hastings T.G. Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. J. Neurochem. 1995;64:919–924. doi: 10.1046/j.1471-4159.1995.64020919.x. [DOI] [PubMed] [Google Scholar]
  25. Hastings T.G., Lewis D.A., Zigmond M. J. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. USA. 1996;93:1956–1961. doi: 10.1073/pnas.93.5.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hastings T.G., Zigmond M. J. Identification of catechol-protein conjugates in neostriatal slices incubated with [3H] dopamine: Impact of ascorbic acid and glutathione. J. Neurochem. 1994;63:1126–1132. doi: 10.1046/j.1471-4159.1994.63031126.x. [DOI] [PubMed] [Google Scholar]
  27. Hensley K., Howard B.J., Carney J.M., Butterfield D.A. Membrane protein alterations in rodent erythrocytes and synaptosomes due to aging and hyperoxia. Biochem. Biophys. Acta. 1995;1270:203–206. doi: 10.1016/0925-4439(95)00043-4. [DOI] [PubMed] [Google Scholar]
  28. Ingram D.K. Toward the behavioral assessment of biological aging in the laboratory mouse: Concepts, terminology, and objectives. Exp. Aging Res. 1983;9:225–238. doi: 10.1080/03610738308258457. [DOI] [PubMed] [Google Scholar]
  29. Ingram D.K., Jucker M., Spangler E.L. Behavioral manifestations of aging. In: Mohr U., Cungworth D.L., Capen C.C., editors. Pathobiology of the Aging Rat. Washington, D.C.: ILSI Press; 1994. pp. 149–170. [Google Scholar]
  30. Ingram D.K., Wiener H.L., Chachich M.E., Long J.M., Hengemihle J., Gupta M. Chronic treatment of aged mice with L-deprenyl produces marked striatal MAO-B inhibition but no beneficial effects on survival, motor performance, or nigral lipofuscin accumulation. Neurobiol. Aging. 1993;14:431–440. doi: 10.1016/0197-4580(93)90101-G. [DOI] [PubMed] [Google Scholar]
  31. Joseph J.A. The putative role of free radicals in the loss of neuronal functioning in senescence. Integ. Physiol. and Behav. Sci. 1992;27:216–227. doi: 10.1007/BF02690894. [DOI] [PubMed] [Google Scholar]
  32. Joseph J.A., Bartus R.T., Clody D., Morgan D., Finch C., Beer B., Sesack S. Psychomotor performance in the senescent rodent: Reduction of deficits via striatal dopamine receptor up-regulation. Neurobiol. Aging. 1983;4:313–319. doi: 10.1016/0197-4580(83)90008-8. [DOI] [PubMed] [Google Scholar]
  33. Joseph J.A., Hunt W.A., Rabin B.M., Dalton T.K. Possible “accelerated striatal aging” induced by 56Fe heavy-particle irradiation: Implications for manned space flights. Radiat. Res. 1992;130:88–93. [PubMed] [Google Scholar]
  34. Joseph J.A., Hunt W.A., Rabin B.M., Dalton T.K., Harris A.H. Deficits in the sensitivity of striatal muscarinic receptors induced by 58Fe heavy-particle irradiation: Further “age-radiation” parallels. Radiat. Res. 1993;135:257–261. [PubMed] [Google Scholar]
  35. Joseph J.A., Lippa A.S. Reduction of motor behavioral deficits in senescent animals via chronic prolactin administration-II. Non-stereotypic behaviors. Neurobiol. Aging. 1986;7:37–40. doi: 10.1016/0197-4580(86)90024-2. [DOI] [PubMed] [Google Scholar]
  36. McDonald R. J., White N.M. Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behav. Neural Biol. 1994;61:260–270. doi: 10.1016/s0163-1047(05)80009-3. [DOI] [PubMed] [Google Scholar]
  37. Mo J.Q., Hom D.G., Andersen J.K. Decreases in protective enzymes correlates with increased oxidative damage in the aging mouse brain. Mech. Ageing Dev. 1995;81:73–82. doi: 10.1016/0047-6374(95)01586-O. [DOI] [PubMed] [Google Scholar]
  38. Morris R.G.M. Spatial localization does not require the presence of local cues. Learning Motiv. 1981;12:239–261. doi: 10.1016/0023-9690(81)90020-5. [DOI] [Google Scholar]
  39. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci. Meth. 1984;11:47–60. doi: 10.1016/0165-0270(84)90007-4. [DOI] [PubMed] [Google Scholar]
  40. Obata T., Yamanaka Y. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation by monoamine oxidase inhibitor in the rat. Neurosci. Lett. 1995;188:13–16. doi: 10.1016/0304-3940(95)11381-6. [DOI] [PubMed] [Google Scholar]
  41. Olanow C.W. An introduction to the free radical hypothesis in Parkinson’s disease. Ann. Neurol. 1992;32:S2–S9. doi: 10.1002/ana.410320703. [DOI] [PubMed] [Google Scholar]
  42. Olanow C.W. An radical hypothesis for neurodegeneration. TINS. 1993;16:439–444. doi: 10.1016/0166-2236(93)90070-3. [DOI] [PubMed] [Google Scholar]
  43. Oliveira M.G.M., Bueno O.F.A., Pomarico A.C., Gugliano E.B. Strategies used by hippocampal-and caudate-putamen-lesioned rats in a learning task. Neurobiol. Learn. Memory. 1997;68:32–41. doi: 10.1006/nlme.1996.3761. [DOI] [PubMed] [Google Scholar]
  44. Pileblad E., Magnusson T. Effective depletion of glutathione in rat striatum and substantia nigra by L-buthionine sulfoximine in combination with 2-Cyclohexene-1-one. Life Sci. 1990;47:2333–2342. doi: 10.1016/0024-3205(90)90272-S. [DOI] [PubMed] [Google Scholar]
  45. Rabinovic A.D., Zigmond M.J., Hastings T.G. Intrastriatal dopamine oxidizes to quinones: Role of endogenous glutathione. Soc. Neurosci. Abstracts. 1994;20:413. [Google Scholar]
  46. Rapp P.R., Rosenberg R.A., Gallagher M. An evaluation of spatial of information processing in aged rats. Behav. Neurosci. 1987;101:3–12. doi: 10.1037/0735-7044.101.1.3. [DOI] [PubMed] [Google Scholar]
  47. Sack C.A., Socci D.J., Crandall B.M., Arendash G.W. Antioxidant treatment with phenyl-á-tert-butyl nitrone (PBN) improves the cognitive performance and survival of aging rats. Neurosci. Lett. 1996;205:181–184. doi: 10.1016/0304-3940(96)12417-4. [DOI] [PubMed] [Google Scholar]
  48. Shukitt-Hale B., Denisova N.A., Strain J.G., Joseph J.A. Psychomotor effects of dopamine infusion under decreased glutathione conditions. Free Radic. Biol. Med. 1997;23:412–418. doi: 10.1016/S0891-5849(97)00094-4. [DOI] [PubMed] [Google Scholar]
  49. Shukitt-Hale B., Erat S.A., Joseph J.A. Spatial learning and memory deficits induced by dopamine administration with decreased glutathione. Free Radic. Biol. Med. 1998;24:1149–1158. doi: 10.1016/S0891-5849(97)00399-7. [DOI] [PubMed] [Google Scholar]
  50. Shukitt-Hale B., Mouzakis G., Joseph J.A. Psychomotor and spatial memory performance in aging male Fischer 344 rats. Exp. Gerontol. 1998;33:615–624. doi: 10.1016/S0531-5565(98)00024-2. [DOI] [PubMed] [Google Scholar]
  51. Socci D.J., Crandall B.M., Arendash G.W. Chronic antioxidant treatment improves the cognitive performance of aged rats. Brain Res. 1995;693:88–94. doi: 10.1016/0006-8993(95)00707-W. [DOI] [PubMed] [Google Scholar]
  52. Spangler E.L., Waggle K.S., Hengemihle J., Roberts D., Hess B., Ingram D.K. Behavioral assessment of aging in male Fischer 344 and Brown Norway rat strains and their F1 hybrid. Neurobiol. Aging. 1994;15:319–328. doi: 10.1016/0197-4580(94)90027-2. [DOI] [PubMed] [Google Scholar]
  53. Spencer R.L., O’Steen W.K., McEwen B.S. Water maze performance of aged Sprague-Dawley rats in relation to retinal morphologic measures. Behav. Brain Res. 1995;68:139–150. doi: 10.1016/0166-4328(94)00167-E. [DOI] [PubMed] [Google Scholar]
  54. Starke-Reed P.E., Oliver C.N. Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys. 1989;275:559–567. doi: 10.1016/0003-9861(89)90402-5. [DOI] [PubMed] [Google Scholar]
  55. Van der Staay F.J., de Jonge M. Effects of age on water escape behavior and on repeated acquisition in rats. Behav. Neural Biol. 1993;60:33–41. doi: 10.1016/0163-1047(93)90690-J. [DOI] [PubMed] [Google Scholar]
  56. Vanella A., Di Giacomo C., Sorrenti V., Russo A., Castorina C., Campisi A., Renis M., Perez-Polo J.R. Free radical scavenger depletion in post-ischemic reperfusion brain damage. Neurochem. Res. 1993;18:1337–1340. doi: 10.1007/BF00975056. [DOI] [PubMed] [Google Scholar]
  57. Wallace J.E., Krauter E.E., Campbell B.A. Animal models of declining memory in the aged: Short-term and spatial memory in the aged rat. J. Gerontol. 1980;35:355–363. doi: 10.1093/geronj/35.3.355. [DOI] [PubMed] [Google Scholar]
  58. Wallace J.E., Krauter E.E., Campbell B.A. Motor and reflexive behavior in the aging rat. J. Gerontol. 1980;35:364–370. doi: 10.1093/geronj/35.3.364. [DOI] [PubMed] [Google Scholar]
  59. Walovitch R.C., Ingram D.K., Spangler E.L., London E.D. Co-dergocrine, cerebral glucose utilization and maze performance in middle-aged rats. Pharmacol. Biochem. Behav. 1987;26:95–101. doi: 10.1016/0091-3057(87)90540-5. [DOI] [PubMed] [Google Scholar]
  60. Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994;74:139–162. doi: 10.1152/physrev.1994.74.1.139. [DOI] [PubMed] [Google Scholar]
  61. Zhang J.R., Andrus P.K., Hall E.D. Age-related regional changes in hydroxyl radical stress and antioxidant in gerbil brain. J. Neurochem. 1993;61:1640–1647. doi: 10.1111/j.1471-4159.1993.tb09798.x. [DOI] [PubMed] [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES