Skip to main content
Age logoLink to Age
. 1999 Oct;22(4):181–186. doi: 10.1007/s11357-999-0021-4

Oxidative stress in hypopituitary dwarf mice and in transgenic mice overexpressing human and bovine GH

J C Carlson 1,, R Bharadwaj 1, A Bartke 2
PMCID: PMC3455413  PMID: 23604427

Abstract

Growth hormone (GH) stimulates metabolic activity. The purpose of this study was to examine whether it is involved in the aging process by increasing oxidative stress. Inorganic peroxides and lipid peroxides were measured in kidney and liver samples in dwarf mice that are deficient in GH, prolactin and thyrotropin and in transgenic mice that produce high levels of GH. In normal male mice, there was an increase in inorganic peroxides in the kidney with age. Levels were lower in old male dwarfs when compared with normal male mice of similar age. Unexpectedly, concentrations of inorganic peroxides were frequently lower in transgenic male and female mice expressing extra copies of GH than in normal controls. Lipid peroxide concentrations were more variable. Transgenic animals expressing bovine GH had the highest levels of lipid peroxides. In dwarfs, kidney levels were similar to those of normal mice but concentrations in the liver were more variable. This study does not indicate that the decrease in life span in transgenic mice producing high levels of GH is due to an increase of oxidative stress. Rather, it suggests that expression of extra copies of the GH gene may lead to a compensatory increase in antioxidant protection.

Full Text

The Full Text of this article is available as a PDF (632.9 KB).

References

  1. Bartke A., Brown-Borg H.M., Bode A.M., Carlson J.C., Hunter W.S., Bronson R.T. Does growth hormone prevent or accelerate aging? Exp. Gerontol. 1998;33:675–687. doi: 10.1016/S0531-5565(98)00032-1. [DOI] [PubMed] [Google Scholar]
  2. Bartke A. Genetic models in the study of anterior pituitary hormones. In: Shire J.G.M., editor. Genetic Variation in Hormone Systems. Boca Raton: CRC Press; 1979. pp. 113–126. [Google Scholar]
  3. Bell, R., Carlson, J.C., Storr, K.C., Herbert, K. and Sivak, J. (1999) High fructose feeding of streptozotocin (STZ)-diabetic rats is associated with increased cataract formation and increased oxidative stress in the kidney. Br. J.Nutr. in press. [PubMed]
  4. Beyer-Mears A., Ku L., Cohen M.P. Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes. 1984;33:604–607. doi: 10.2337/diab.33.6.604. [DOI] [PubMed] [Google Scholar]
  5. Bradford M.M. a rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Brown-Borg H. M., Borg K. E., Meliska C. J., Bartke A. Dwarf mice and the aging process. Nature. 1996;384:33. doi: 10.1038/384033a0. [DOI] [PubMed] [Google Scholar]
  7. Carlson J.C., Forbes W.F. The free radical theory of aging: A critique and unresolved questions. Can. J. Aging. 1992;11:262–268. [Google Scholar]
  8. Cecim M., Bartke A., Yun J.S., Wagner T.E. Expression of human, but not bovine, growth hormone genes promotes development of mammary tumors in transgenic mice. Transgenics. 1994;1:431–437. [Google Scholar]
  9. Chandrashekar V., Bartke A. Induction of endogenous insulin-like growth factor-1 secretion alters the hypothalamic-pituitary-testicular function in growth hormone-deficient adult dwarf mice. Biol. Reprod. 1993;48:544–551. doi: 10.1095/biolreprod48.3.544. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984;219:1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harman D. The aging process. Proc. Natl. Acad. Sci. 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hauck, S.J. and Bartke, A. (1999) Effects of growth hormone (GH) status on hypothalamic antioxidant enzymes (AOEs). Free Rad. Biol. Med. in press. [DOI] [PubMed]
  13. Hunter W.S., Croson W.B., Bartke A., Gentry M.V., Meliska C.J. Low body temperature on long-lived Ames dwarf mice at rest and during stress. Physiol. Behav. 1999;67:433–437. doi: 10.1016/S0031-9384(99)00098-0. [DOI] [PubMed] [Google Scholar]
  14. Hunt J.V., Dean R.T., Wolff S.P. Hydroxyl radical production and autoxidative glycosylation. Biochem. J. 1988;256:205–212. doi: 10.1042/bj2560205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kajiura L.J., Rollo C.D. A mass budget for transgenic “supermice” engineered with extra growth hormone genes: evidence for energetic limitation. Can. J. Zool. 1994;72:1010–1017. doi: 10.1139/z94-137. [DOI] [Google Scholar]
  16. McGrane, M.M., deVente, J., Yun, J., Bloom, J., Park, E., Wynshaw-Boris, A., Wagner, T., Rottman, F.M. and Hanson, RW. (1988) Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice. J. Biol. Chem. 263, 11443–11451. [PubMed]
  17. Meiattini F. Inorganic peroxides. In: Bernt E., Bergmeyer H., editors. Methods of enzymatic analysis. 2nd ed. New York: Academic Press; 1985. pp. 566–571. [Google Scholar]
  18. Orr W.C., Sohal R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  19. Palmiter R.D., Brinster R.L., Hammer R.E., Trumbauer M.E., Rosenfeld M.G., Birnberg N.C., Evans R.M. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982;300:611–615. doi: 10.1038/300611a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pryor W.A. The free-radical theory of aging revisited: A critique and a suggested disease-specific theory. In: Warner H.R., Butler R.N., Spott R.L., Schneider E.L., editors. Modern Biological Theories of Aging. New York: Raven Press; 1987. pp. 89–112. [Google Scholar]
  21. Rollo C.D., Carlson J.C., Sawada M. Giant transgenic “supermice” exhibit accelerated aging consistent with the free radical theory. Can. J. Zool. 1996;74:606–620. [Google Scholar]
  22. Sawada M., Carlson J.C. Association of lipid peroxidation during luteal regression in the rat and natural aging in the rotifer. Exp. Gerontol. 1985;20:179–186. doi: 10.1016/0531-5565(85)90035-X. [DOI] [PubMed] [Google Scholar]
  23. Sawada M., Sester U., Carlson J.C. Superoxide radical formation and associated biochemical alterations in the plasma membrane of brain, heart, and liver during the lifetime of the rat. J. Cell. Biochem. 1992;48:296–304. doi: 10.1002/jcb.240480310. [DOI] [PubMed] [Google Scholar]
  24. Sawada M., Carlson J.C. Intracellular regulation of progesterone secretion by the superoxide radical in the rat corpus luteum. Endocrinology. 1996;137:1580–1584. doi: 10.1210/en.137.5.1580. [DOI] [PubMed] [Google Scholar]
  25. Scanes C.G. Growth hormone action: protein metabolism. In: Harvey S., Scanes C.G., Daughaday W.H., editors. Growth Hormone. Boca Raton: CRC Press; 1995. pp. 389–391. [Google Scholar]
  26. Scanes C.G. Growth hormone action: carbohydrate metabolism. In: Harvey S., Scanes C.G., Daughaday W.H., editors. Growth Hormone. Boca Raton: CRC Press; 1995. pp. 371–377. [Google Scholar]
  27. Shi L., Sawada M., Sester U., Carlson J.C. Alterations in free radical activity in aging Drosophila. Exp. Gerontol. 1994;29:575–584. doi: 10.1016/0531-5565(94)90040-X. [DOI] [PubMed] [Google Scholar]
  28. Sornson M.W., Wu W., Dasen J.S., Flynn S.E., Norman D.J., O’Connell S.M., Gukovsky I., Carriere C., Ryan A.K., Miller A.P., Zuo L., Gleiberman A.S., Anderson B., Beamer W.G., Rosenfeld M.G. Pituitary lineage determination by the prophet of pit-1 homeodomain factor defective in Ames dwarfism. Nature. 1996;384:327–333. doi: 10.1038/384327a0. [DOI] [PubMed] [Google Scholar]
  29. Steger R.W., Bartke A., Cecim M. Premature aging in transgenic mice expressing different growth hormone genes. J Reprod Fert Suppl. 1993;46:61–75. [PubMed] [Google Scholar]
  30. Steger R.W., Bartke A., Parkening T.A., Collins T., Cerven R., Yun J.S., Wagner T.E. Effects of chronic exposure to bovine growth hormone (bGH) on the hypothalamic-pituitary axis in transgenic mice: relationship to the degree of expression of the PEPCK-bGH hybrid gene. Transgenics. 1994;1:245–253. [Google Scholar]
  31. Sugino N., Takamori M.H., Zhong L., Telleria C.M., Shiota K., Gibori G. Hormone regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase messenger ribonucleic acid in the rat corpus luteum. Biol. Reprod. 1998;59:599–605. doi: 10.1095/biolreprod59.3.599. [DOI] [PubMed] [Google Scholar]
  32. Tsushima T., Friesen H.G. Radioreceptor assay for growth hormone. J. Clin. Endocrinol. Metab. 1973;37:334–337. doi: 10.1210/jcem-37-2-334. [DOI] [PubMed] [Google Scholar]
  33. Uchiyama M., Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978;86:271–278. doi: 10.1016/0003-2697(78)90342-1. [DOI] [PubMed] [Google Scholar]
  34. Williamson J.R., Chang K., Frangos M., Hasan K.S., Ido Y., Kawamura T., Nyengaard J.R., Van Den Eden M., Kilo C., Tilton R.G. Hyperglycemic Pseudohypoxia and diabetic complications. Diabetes. 1993;42:801–811. doi: 10.2337/diab.42.6.801. [DOI] [PubMed] [Google Scholar]
  35. Wolff S.W.P., Dean R.T. Glucose autoxidation and protein modification. Biochem. J. 1987;245:243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994;74:139–162. doi: 10.1152/physrev.1994.74.1.139. [DOI] [PubMed] [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES