Skip to main content
Journal of the American Aging Association logoLink to Journal of the American Aging Association
. 2001 Jul;24(3):85–96. doi: 10.1007/s11357-001-0012-6

Mitochondrial oxidant generation and oxidative damage in Ames dwarf and GH transgenic mice

Holly Brown-Borg 1,, W Thomas Johnson 2, Sharlene Rakoczy 1, Mark Romanick 1
PMCID: PMC3455482  PMID: 23604879

Abstract

Aging is associated with an accumulation of oxidative damage to proteins, lipids and DNA. Cellular mechanisms designed to prevent oxidative damage decline with aging and in diseases associated with aging. A long-lived mouse, the Ames dwarf, exhibits growth hormone deficiency and heightened antioxidative defenses. In contrast, animals that over express GH have suppressed antioxidative capacity and live half as long as wild type mice. In this study, we examined the generation of H2O2 from liver mitochondria of Ames dwarf and wild type mice and determined the level of oxidative damage to proteins, lipids and DNA in various tissues of these animals. Dwarf liver mitochondria (24 months) produced less H2O2 than normal liver in the presence of succinate (p<0.03) and ADP (p<0.003). Levels of oxidative DNA damage (8ÕHdG) were variable and dependent on tissue and age in dwarf and normal mice. Forty-seven percent fewer protein carbonyls were detected in 24-month old dwarf liver tissue compared to controls (p<0.04). Forty percent more (p<0.04) protein carbonyls were detected in liver tissue (3-month old) of GH transgenic mice compared to wild types while 12 month old brain tissue had 53% more protein carbonyls compared to controls (p<0.005). Levels of liver malonaldehyde (lipid peroxidation) were not different at 3 and 12 months of age but were greater in Ames dwarf mice at 24 months compared to normal mice. Previous studies indicate a strong negative correlation between plasma GH levels and antioxidative defense. Taken together, these studies show that altered GH-signaling may contribute to differences in the generation of reactive oxygen species, the ability to counter oxidative stress and life span.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Footnotes

The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

Mention of a trademark or proprietary product does not constitute a guarantee of warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

References

  • 1.Harman D. The aging process. Proc. Natl. Acad. Sci. (USA) 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Pryor W.A. The free radical theory of aging revisited: A critique and a suggested disease-specific theory. In: Warner H.R., Butler R.N., Sprott R.L., Schneider E.L., editors. Modern Biological Theories of Aging. New York: Raven Press; 1987. pp. 89–112. [Google Scholar]
  • 3.Sohal R.S., Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Rad. Biol. Med. 1994;16:621–626. doi: 10.1016/0891-5849(94)90062-0. [DOI] [PubMed] [Google Scholar]
  • 4.Orr W., Sohal R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;257:1220–1224. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  • 5.Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. (USA) 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984;219:1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wei Y.H. Oxidative stress and mitochondrial DNA mutations in human aging. Proc. Soc. Exp. Biol. Med. 1998;217:53–63. doi: 10.3181/00379727-217-44205. [DOI] [PubMed] [Google Scholar]
  • 8.Sohal R.S., Svensson I., Brunk U.T. Hydrogen peroxide production by liver mitochondria in different species. Mech. Age. Dev. 1990;53:209–215. doi: 10.1016/0047-6374(90)90039-I. [DOI] [PubMed] [Google Scholar]
  • 9.Ku H.H., Sohal R.S. Comparison of mitochondrial prooxidant generation and antioxidant defenses between rat and pigeon: Possible basis of variation in longevity and metabolic potential. Mech. Age. Dev. 1993;72:67–76. doi: 10.1016/0047-6374(93)90132-B. [DOI] [PubMed] [Google Scholar]
  • 10.Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Forster M. J., Sohal B.H., Sohal R.S. Reversible effects of long-term caloric restriction on protein oxidative damage. J. Gerontol. 2000;55A:B522–B529. doi: 10.1093/gerona/55.11.b522. [DOI] [PubMed] [Google Scholar]
  • 12.Weindruch R. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol Pathol. 1996;24:742–5. doi: 10.1177/019262339602400618. [DOI] [PubMed] [Google Scholar]
  • 13.Brown-Borg H.M., Borg K.E., Meliska C. J., Bartke A. Dwarf mice and the aging process. Nature. 1996;384:33. doi: 10.1038/384033a0. [DOI] [PubMed] [Google Scholar]
  • 14.Brown-Borg H.M., Rakoczy S.G. Catalase expression in delayed and premature aging mouse models. Exp Geron. 2000;35:199–212. doi: 10.1016/S0531-5565(00)00079-6. [DOI] [PubMed] [Google Scholar]
  • 15.Miller R.A. Are there genes for aging? J Gerontol. Biol Sci. 1999;54A:B297–B307. doi: 10.1093/gerona/54.7.b297. [DOI] [PubMed] [Google Scholar]
  • 16.Flurkey K., Papconstantinou J., Miller R.A., Harrison D.A. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. 2001;98:6736–6741. doi: 10.1073/pnas.111158898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kopchick J.J., Laron Z. Is the Laron mouse an accurate model of Laron Syndrome? Mol. Genet. Metab. 1999;68:232–236. doi: 10.1006/mgme.1999.2890. [DOI] [PubMed] [Google Scholar]
  • 18.Coschigano K.T., Clemmons D., Bellush L.L., Kopchick J.J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology. 2000;141:2608–13. doi: 10.1210/en.141.7.2608. [DOI] [PubMed] [Google Scholar]
  • 19.Steger R.W., Bartke A., Cecim M. Premature aging in transgenic mice expressing growth hormone genes. J Repro Fertil Supp. 1993;146:61–75. [PubMed] [Google Scholar]
  • 20.McGrane M.M., DeVente J., Yun J., Bloom J., Park E., Wynshaw-Boris A., Wagner T., Rottman F.M., Hanson F.W. Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice. J Biol Chem. 1988;263:11443–11451. [PubMed] [Google Scholar]
  • 21.Steger R.W., Bartke A., Parkening T.A., Collins T., Cerven R., Jun J.S., Wagner T.E. Effects of chronic exposure to bovine growth hormone (bGH) on the hypothalamic-pituitary axis in transgenic mice: relationship to the degree of expression of the PEPCK.bGH hybrid gene. Transgenics. 1994;1:245–253. [Google Scholar]
  • 22.Cecim M., Bartke A., Yun J.S., Wagner T.E. Expression of human, but not bovine, growth hormone genes promotes development of mammary tumors in transgenic mice. Transgenics. 1994;1:431–437. [Google Scholar]
  • 23.Trounce I.A., Kim Y.L., Jun A.S., Wallace D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264:484–509. doi: 10.1016/s0076-6879(96)64044-0. [DOI] [PubMed] [Google Scholar]
  • 24.Kwong L.K., Sohal R.S. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch. Biochem. Biophys. 1998;350:118–126. doi: 10.1006/abbi.1997.0489. [DOI] [PubMed] [Google Scholar]
  • 25.Floyd R.A., Watson J.J., Wong P.K., Altmiller D.H., Rickard R.C. Free Rad. Res. Comm. 1986;1:163–172. doi: 10.3109/10715768609083148. [DOI] [PubMed] [Google Scholar]
  • 26.Park J.W., Floyd R.A. Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Rad. Biol. Med. 1989;122:245. doi: 10.1016/0891-5849(92)90111-s. [DOI] [PubMed] [Google Scholar]
  • 27.de Zwart L.L., Meerman J.H.N., Commandeur J.N.M., Vermeulen N.P.E. Biomarkers of free radical damage applications in experimental animals and in humans. Free Rad. Biol. Med. 1999;26:202–226. doi: 10.1016/S0891-5849(98)00196-8. [DOI] [PubMed] [Google Scholar]
  • 28.Shigenaga M.K., Aboujaoude E.N., Chen Q., Ames B.N. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by HPLC with electrochemical detection. Methods Enzymol. 1994;334:16–59. doi: 10.1016/0076-6879(94)34073-0. [DOI] [PubMed] [Google Scholar]
  • 29.Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. 1994;91:10771–10778. doi: 10.1073/pnas.91.23.10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shmuel S., Stadtman E.R. Methods Enzymology. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-H. [DOI] [PubMed] [Google Scholar]
  • 31.Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynoneal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 1991;11:81. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  • 32.Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 33.Brown-Borg H.M., Bode A.M., Bartke A. Antioxidative mechanisms and plasma growth hormone levels: Potential relationship in the aging process. Endocrine. 1999;11:41–48. doi: 10.1385/ENDO:11:1:41. [DOI] [PubMed] [Google Scholar]
  • 34.Wallace D.C. Mitochondrial diseases in man and mouse. Science. 1999;283:1482–8. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
  • 35.Melov S., Coskun P., Patel M., Tuinstra R., Cottrell B., Jun A.S., Zastawny T.H., Dizdaroglu M., Goodman S.I., Huang T.T., Miziorko V.H., Epstein C.J., Wallace D.C. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. 1999;96:846–51. doi: 10.1073/pnas.96.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Brown-Borg H.M., Harman S.M. Hormones and oxidative stress. In: Cutler R.G., Rodriguez H., editors. Oxidative Stress and Aging: Advances in Basic Science, Diagnostics and Intervention. New Jersey: World Scientific Pub.; 2002. [Google Scholar]
  • 37.Kim J.D., McCarter R.J.M., Yu B.P. Influence of age, exercise, and dietary restriction on oxidative stress in rats. Age. Clin. Exp. Res. 1996;8:123–129. doi: 10.1007/BF03339566. [DOI] [PubMed] [Google Scholar]
  • 38.Brown-Borg, HM, Rakoczy, SG, Kennedy, MA, and Romanick, MA: Relationship between plasma growth hormone, antioxidants and oxidative damage in premature and delayed aging mice. Endocrine Society Abstract p. 237–238, 2001.
  • 39.Hunter W.S., Croson W.B., Bartke A., Gentry M.V., Meliska C.J. Low body temperature in long-lived Ames dwarf mice during rest and during stress. Physiol. Behav. 1999;67:433–437. doi: 10.1016/S0031-9384(99)00098-0. [DOI] [PubMed] [Google Scholar]
  • 40.Hamilton, ML, Van Remmen, H, Drake, JA, Yand, H, Guo, ZM, Kewitt, Walter, CA and Richardson, A: Does oxidative damage to DNA increase with age? Proc. Natl. Aca. Sci. 2001. [DOI] [PMC free article] [PubMed]
  • 41.Richter C., Park J.W., Ames B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. 1988;85:6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Forman H. J., Azzi A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 1997;11:374–5. doi: 10.1096/fasebj.11.5.9141504. [DOI] [PubMed] [Google Scholar]
  • 43.de Souza-Pinto N.C., Hogue B.A., Bohr V.A. DNA repair and aging in mouse liver: 8-oxo DG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Rad. Biol. Med. 2001;30:916–923. doi: 10.1016/S0891-5849(01)00483-X. [DOI] [PubMed] [Google Scholar]
  • 44.Hauck S., Bartke A. Effects of growth hormone on hypothalamic catalase and CuZn superoxide dismutase. Free Rad Biol Med. 2000;28:970–978. doi: 10.1016/S0891-5849(00)00186-6. [DOI] [PubMed] [Google Scholar]
  • 45.Cardoza-Pelaez S., Song S., Parthasarathy A., Epstein C.J., Sanchez-Ramos J. Attenuation of age-dependent oxidative damage to DNA and protein in brainstem of Tg Cu/Zn SOD mice. Neurobiol. Aging. 1998;19:311–316. doi: 10.1016/S0197-4580(98)00067-0. [DOI] [PubMed] [Google Scholar]
  • 46.Bartke A. Delayed aging in Ames dwarf mice. Relationships to endocrine function and body size. In: Hekimi, editor. Results and Problems in Cell Differentiation: The Molecular Genetics of Aging. Verlin: Springer-Verlag; 2000. pp. 181–202. [DOI] [PubMed] [Google Scholar]
  • 47.Davies S.M.K., Poljak A., Duncan M.W., Smythe G.A., Murphy M.P. Measurements of protein carbonyls, ortho-and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Rad. Biol. Med. 2001;31:181–190. doi: 10.1016/S0891-5849(01)00576-7. [DOI] [PubMed] [Google Scholar]
  • 48.Coux O., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  • 49.Rivett A.J. Intracellular distribution of proteasomes. Curr Opin Immunol. 1998;10:110–4. doi: 10.1016/S0952-7915(98)80040-X. [DOI] [PubMed] [Google Scholar]
  • 50.Stadtman, ER: Protein oxidation and aging. Science 257, 1220–1224, 992. [DOI] [PubMed]
  • 51.Starke-Reed P.E., Oliver C.N. Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys. 1989;275:559. doi: 10.1016/0003-9861(89)90402-5. [DOI] [PubMed] [Google Scholar]
  • 52.Conconi M., Friguet B. Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep. 1997;24:45–50. doi: 10.1023/A:1006852506884. [DOI] [PubMed] [Google Scholar]
  • 53.Petropoulos I., Conconi M., Wang X., Hoenel B., Bregegere F., Milner Y., Friguet B. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J. Gerontol. 2000;55A:B220–B227. doi: 10.1093/gerona/55.5.b220. [DOI] [PubMed] [Google Scholar]
  • 54.Davies K.J.A. Protein damage and degradation by oxygen radicals. I. General aspects. J. Biol. Chem. 1987;262:9895–9901. [PubMed] [Google Scholar]
  • 55.Pero R.W., Hoppe C., Sheng Y. Serum thiols as a surrogate estimate of DNA repair correlates with human life span. J. Anti-Aging Med. 2000;3:241–249. [Google Scholar]
  • 56.Ehrhart J., Zeevalk G.D. Hydrogen peroxide removal and glutathione mixed disulfide formation during metabolic inhibition in mesencephalic cultures. J. Neurochem. 2001;77:1496–1507. doi: 10.1046/j.1471-4159.2001.00355.x. [DOI] [PubMed] [Google Scholar]
  • 57.Gutteridge J.M.C., Halliwell B. The measurement and mechanism of lipid perociation in biological systems. Trends Biochem. Sci. 1990;15:12–135. doi: 10.1016/0968-0004(90)90206-Q. [DOI] [PubMed] [Google Scholar]
  • 58.Dianzani M.U. 4-hydroxynoneal and cell signaling. Free Rad. Res. 1998;28:553–560. doi: 10.3109/10715769809065811. [DOI] [PubMed] [Google Scholar]
  • 59.Uchida K., Shiraishi M., Naito Y., Torii Y., Nakamura Y., Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is potential inducer of intracellular peroxide production. J. Biol. Chem. 1999;274:2234–2242. doi: 10.1074/jbc.274.4.2234. [DOI] [PubMed] [Google Scholar]
  • 60.Nilakantan V., Spear B.T., Glauert H.P. Effect of the peroxisome proliferator ciprofibrate on lipid peroxidation and 8-hydroxydeoxyguanosine formation in transgenic mice with elevated hepatic catalase activity. Free Rad. Biol. Med. 1998;24(9):1430–1436. doi: 10.1016/S0891-5849(98)00007-0. [DOI] [PubMed] [Google Scholar]
  • 61.Meiattini F. Inorganic peroxides. In: Bernt E., Bergmeyer H., editors. Methods of Enzymatic Analysis. 2nd edition. New York: Academic Press; 1985. pp. 566–571. [Google Scholar]
  • 62.Bartke A., Brown-Borg H.M., Bode A.M., Carlson J., Hunter W.S., Bronson R.T. Does growth hormone prevent or accelerate aging? Exp. Geron. 1998;33:675–687. doi: 10.1016/S0531-5565(98)00032-1. [DOI] [PubMed] [Google Scholar]
  • 63.Carlson J.C., Bharadwaj R., Bartke A. Oxidative stress in hypopituitary dwarf mice and in transgenic mice overexpressing human and bovine GH. Age. 1999;22:181–186. doi: 10.1007/s11357-999-0021-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Guerrero A., Pamplona R., Portero-Otin M., Barja G., Lopez-Torres M. Effect of thyroid status on lipid composition and peroxidation in the mouse liver. Free Rad. Biol. Med. 1999;26:73–80. doi: 10.1016/S0891-5849(98)00173-7. [DOI] [PubMed] [Google Scholar]
  • 65.Asayama K., Dobashi K., Hayashibe H., Megata Y., Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology. 1987;121:2112–2118. doi: 10.1210/endo-121-6-2112. [DOI] [PubMed] [Google Scholar]
  • 66.Rollo C.D., Carlson J., Sawada M. Accelerated aging of giant transgenic mice is associated with elevated free radical processes. Can. J. Zool. 1996;74:606–620. [Google Scholar]
  • 67.Hauck S., Bartke A. Free radical defenses in the liver and kidney of human growth hormone transgenic mice: possible mechanisms of early mortality. J Gerontol Bio Sci. 2001;56A:B153–162. doi: 10.1093/gerona/56.4.b153. [DOI] [PubMed] [Google Scholar]
  • 68.Promislow D.E. On size and survival: progress and pitfalls in the allometry of life span. J. Gerontol. 1993;48:B115–B123. doi: 10.1093/geronj/48.4.b115. [DOI] [PubMed] [Google Scholar]
  • 69.Patronek G.J., Waters D.J., Glickman L.T. Comparative longevity of pet dogs and humans: Implications for gerontology research. J. Gerontol. 1997;52A:B171–178. doi: 10.1093/gerona/52a.3.b171. [DOI] [PubMed] [Google Scholar]
  • 70.Samaras T. How body height and weight affect our performance, longevity, and survival. J. Wash. Aca. Sci. 1996;84:131–156. [Google Scholar]
  • 71.Samaras T.T., Elrick H., Storms L.H. Height, health and growth hormone. Acta Paediatr. 1999;88:602–609. doi: 10.1080/08035259950169233. [DOI] [PubMed] [Google Scholar]
  • 72.Sornson M.W., Wu W., Dasen J.S., Flynn S.E., Norman D. J., O’Connell S.M., Gukovsky I., Carriere C., Ryan A.K., Miller A.P. Pituitary lineage determination by the prophet of pit-1 homeodomain factor defective in Ames dwarfism. Nature. 1996;384:327–333. doi: 10.1038/384327a0. [DOI] [PubMed] [Google Scholar]
  • 73.Li S., Crenshaw E.B., 3rd, Rawson E.J., Simmons D.M., Swanson L.W., Rosenfeld G. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990;347:528–533. doi: 10.1038/347528a0. [DOI] [PubMed] [Google Scholar]
  • 74.Krzisnik C., Kolacio Z., Battelino T., Brown M., Parks J.S., Laron Z. The ‘little people’ of the Island of Krk-revisited. Etiology of hypopituitarism revealed. J Endo Genet. 1999;1:9–19. [Google Scholar]
  • 75.Pendergrass W.R., Li Y., Jiang D., Wolf N.S. Decrease in cellular replicative potential in giant mice transfected with the bovine growth hormone gene correlates to shortened life span. J. Cell. Physiol. 1993;156:96–103. doi: 10.1002/jcp.1041560114. [DOI] [PubMed] [Google Scholar]
  • 76.Miller D.B., Bartke A., O’Callaghan J.P. Increased glial fibrillary acidic protein (GFAP) levels in the brains of transgenic mice expressing the bovine growth hormone (bGH) gene. Exp. Gerontol. 1995;30:383–400. doi: 10.1016/0531-5565(94)00064-A. [DOI] [PubMed] [Google Scholar]
  • 77.Meliska C.J., Burke P.A., Bartke A., Jensen R.A. Inhibitory avoidance and appetitive learning in aged normal mice: comparison with transgenic mice having elevated plasma growth hormone levels. Neurobiol. Learn. Mem. 1997;68:1–12. doi: 10.1006/nlme.1997.3772. [DOI] [PubMed] [Google Scholar]
  • 78.Naar E.M., Bartke A., Majumdar S.S., Buonomo F.C., Yun J.S., Wagner T.E. Fertility of transgenic female mice expressing bovine growth hormone or human growth hormone variant genes. Biol Reprod. 1991;45:178–87. doi: 10.1095/biolreprod45.1.178. [DOI] [PubMed] [Google Scholar]
  • 79.Kajiura L.J., Rollo C.D. A mass budget for transgenic ’supermice’ engineered with extra growth hormone genes: evidence for energetic limitation. Can. J. Zool. 1994;72:1010–1017. doi: 10.1139/z94-137. [DOI] [Google Scholar]
  • 80.Rudman D., Feller A.G., Nagraj H.S., Gergans G.A., Lalitha P.Y., Goldberg A.F., Schenkler R.A., Cohn L., Rudman I.W., Mattson D.E. Effects of human growth hormone in men over 60 years old. New. Engl. J. Med. 1990;323:1–6. doi: 10.1056/NEJM199007053230101. [DOI] [PubMed] [Google Scholar]
  • 81.Sonksen, PH, Cuneo, RC, Salomon, F, McGauley, G, Wiles, CM, Wilmshurst, P, Byrne, C, Hesp, R, Lowy, C, and Weissberger, A: Growth hormone therapy in adults with growth hormone deficiency. Acta Paediatr Scand Suppl. 379:139146, 1991. [DOI] [PubMed]
  • 82.Kinney B.A., Meliska C.J., Steger R.W., Bartke A. Evidence that Ames dwarf mice age differently from their normal siblings in behavioral and learning and memory parameters. Horm Behav. 2001;39:277–285. doi: 10.1006/hbeh.2001.1654. [DOI] [PubMed] [Google Scholar]
  • 83.Brown-Borg, HM, Rakoczy, SG, Romanick, MA, and Kennedy, MA: Effects of growth hormone and insulin like growth factor-1 on hepatocyte antioxidative enzymes. Exp. Biol. Med. (in press), 2002. [DOI] [PubMed]
  • 84.Fabrizio P., Pozza F., Pletcher S.D., Gendron C.M., Longo V.D. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292:288–290. doi: 10.1126/science.1059497. [DOI] [PubMed] [Google Scholar]
  • 85.Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R.A. Caenorhabiditis elegans mutant that lives twice as long as wild type. Nature. 1993;266:461. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  • 86.Johnson T.E., Hutchinson E.W. Aging in Caenorhabditis elegans: update 1988. In: Rothstein M., editor. Review of Biological Research in Aging. New York: Alan R Liss; 1990. [Google Scholar]
  • 87.Tatar M., Kopelman A., Epstein D., Tu M.P., Yin C.M., Garofalo R.S. A mutant drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–110. doi: 10.1126/science.1057987. [DOI] [PubMed] [Google Scholar]
  • 88.Clancy D.J., Gems D., Harshman L.G., Oldham S., Stocker H., Hafen E., Leevers S.J., Partridge L. Extension of lifespan by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292:104–106. doi: 10.1126/science.1057991. [DOI] [PubMed] [Google Scholar]
  • 89.Migliaccio E., Giorgio M., Mele S., Pelicci G., Reboldi P., Pandolfi P.P., Lanfrancone L., Pelicci P.G. The p66shc adaptor protein controls oxidative stress and life span in mammals. Nature. 1999;402:309–313. doi: 10.1038/46311. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the American Aging Association are provided here courtesy of American Aging Association

RESOURCES