Skip to main content
Journal of the American Aging Association logoLink to Journal of the American Aging Association
. 2002 Apr;25(2):79–86. doi: 10.1007/s11357-002-0006-z

Stem cells from birth to death: The history and the future

Gerald de Haan 1, Gary Van Zant 2,
PMCID: PMC3455756  PMID: 23604899

Abstract

The concept that adult stem cells, despite their impressive proliferative potential, are immortal has been challenged by experimental studies of hematopoietic stem cells. In this review, we discuss the properties that characterize a stem cell, the growing list of tissues in which stem cells are found, how they can be identified and isolated, how stem cells may transdifferentiate, and the findings that illustrate how age affects the hematopoietic stem cell population. We propose that an aging stem cell population affects tissue and organ homeostasis, particularly in response to environmental stresses, and we hypothesize that through this mechanism the functional status of stem cells affects the longevity of the organism.

Full Text

The Full Text of this article is available as a PDF (939.9 KB).

References

  • 1.Potten C., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  • 2.Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D.M., Leri, A. and Anversa, P.: Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A, 98: 10344–10349., 2001. [DOI] [PMC free article] [PubMed]
  • 3.Jackson, K.A., Mi, T.J. and Goodell, M.A.: Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 96: 14482–14486, 1999. [DOI] [PMC free article] [PubMed]
  • 4.Quaini F., Urbanek K., Beltrami A.P., Finato N., Beltrami C.A., Nadal-Ginard B., Kajstura J., Led A., Anversa P. Chimerism of the transplanted heart. N Engl J Meal. 2002;346:5–15. doi: 10.1056/NEJMoa012081. [DOI] [PubMed] [Google Scholar]
  • 5.Horner P.J., Gage F.H. Regenerating the damaged central nervous system. Nature. 2000;407:963–970. doi: 10.1038/35039559. [DOI] [PubMed] [Google Scholar]
  • 6.Palmer T.D., Markakis E.A., Willhoite A. R., Safar F., Gage F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci. 1999;19:8487–8497. doi: 10.1523/JNEUROSCI.19-19-08487.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Metcalf D. The Molecular Control of Blood Cells. Cambridge, MA: Harvard Univ. Press; 1988. [Google Scholar]
  • 8.Thomas E.D. Historical Review: A history of haemopoietic cell transplantation. Br. J. Haemat. 1999;105:330–339. doi: 10.1111/j.1365-2141.1999.01337.x. [DOI] [PubMed] [Google Scholar]
  • 9.Harrison D.E., Stone M., Astle C.M. Effects of transplantation on the primitive immunohematopoietic stem cell. J Exp Med. 1990;172:431–437. doi: 10.1084/jem.172.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Abkowitz J.L., Golinelli D., Harrison D.E., Guttorp P. In vivo kinetics of murine hemopoietic stem cells. Blood. 2000;96:3399–3405. [PubMed] [Google Scholar]
  • 11.Pappenheim A. Vergleichende Untersuchungen uberdie elementare Zusammensetzung des rothen Knochenmarkes einiger Saugethiere. Virchow’s Arch. path. Anat. 1899;157:19–76. [Google Scholar]
  • 12.Maximow A. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere. Folia Haematol. 1909;8:125–134. [Google Scholar]
  • 13.Yoffey J.M. Quantitative Cellular Haematology. Springfield, IL: Charles C. Thomas; 1960. pp. 78–85. [Google Scholar]
  • 14.Dicke K.A., van Noord M.J., van Bekkum D.W. Attempts at morphological identification of the hemopoietic stem cell in rodents and primates. Exp Hematol. 1973;1:36–45. [PubMed] [Google Scholar]
  • 15.van Bekkum D.W., van Noord M.J., Maat B., Dicke K.A. Attempts at identification of hemopoietic stem cell in mouse. Blood. 1971;38:547–558. [PubMed] [Google Scholar]
  • 16.van Bekkum D.W., Visser J.W., Bauman J.G., Mulder A.H., Eliason J.F., de Leeuw A.M. Direct morphological and functional examination of murine pluripotent hemopoietic stem cells. Ann N Y Acad Sci. 1985;459:143–149. doi: 10.1111/j.1749-6632.1985.tb20822.x. [DOI] [PubMed] [Google Scholar]
  • 17.Jacobson L.O., Marks E.K., Robson M.J., Gaston E.O., Zirkle R.E. Effect of spleen protection on mortality following x-irradiation. J. Lab. Clin. Med. 1949;34:1538–1543. [Google Scholar]
  • 18.Jacobson L.O., Simmons E.L., Marks E.K., Gaston E.O., Robson M.J., Eldredge J.H. Further studies on recovery from radiation injury. J. Lab. Clin. Med. 1951;37:683–687. [PubMed] [Google Scholar]
  • 19.Lorenz E., Uphoff D., Reid T.R., Shelton E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J. Natl. Cancer Inst. 1951;12:197–201. [PubMed] [Google Scholar]
  • 20.Till J.E., McCulloch E.A. Direct measurement of radiation sensitivity of normal mouse bone marrow cells. Radiat.Res. 1961;14:213–222. [PubMed] [Google Scholar]
  • 21.Thomas E.D., Lochte H.L., Jr., Lu W.C., Ferrebee J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257:491–496. doi: 10.1056/NEJM195709122571102. [DOI] [PubMed] [Google Scholar]
  • 22.Thomas E.D., Lochte H.L., Jr., Cannon J.H., Sahler O.D., Ferrebee J.W. Supralethal whole body irradiation and isologous marrow transplantation in man. J. Clin. Invest. 1959;38:1709–1716. doi: 10.1172/JCI103949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Blau H.M., Brazelton T.R., Weimann J.M. The evolving concept of a stem cell: entity or function? Cell. 2001;105:829–841. doi: 10.1016/S0092-8674(01)00409-3. [DOI] [PubMed] [Google Scholar]
  • 24.Worton R.G., McCulloch E.A., Till J.E. Physical separation of hemopoietic stem cells from cells forming colonies in culture. J Cell Physiol. 1969;74:171–182. doi: 10.1002/jcp.1040740209. [DOI] [PubMed] [Google Scholar]
  • 25.Worton R.G., McCulloch E.A., Till J.E. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med. 1969;130:91–103. doi: 10.1084/jem.130.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Visser J.W., Bauman J.G., Mulder A.H., Eliason J.F., de Leeuw A.M. Isolation of murine pluripotent hemopoietic stem cells. J. Exp. Med. 1984;159:1576–1590. doi: 10.1084/jem.159.6.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bauman J.G., Wagemaker G., Visser J.W. A fractionation procedure of mouse bone marrow cells yielding exclusively pluripotent stem cells and committed progenitors. J Cell Physiol. 1986;128:133–142. doi: 10.1002/jcp.1041280120. [DOI] [PubMed] [Google Scholar]
  • 28.Ploemacher R.E., Brons N.H.C. Isolation of hemopoietic stem cell subsets from murine bone marrow: I. Radioprotective ability of purified cell suspensions differing in the proportion of day-7 and day-12 CFU-S. Exp. Hematol. 1988;16:21–26. [PubMed] [Google Scholar]
  • 29.Spangrude G.J., Heimfeld S., Weissman I.L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241:58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
  • 30.Baum C.M., Weissman I.L., Tsukamoto A.S., Buckle A.-M., Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA. 1992;89:2804–2808. doi: 10.1073/pnas.89.7.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wolf N.S., Kone A., Priestley G.V., Bartelmez S.H. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol. 1993;21:614–622. [PubMed] [Google Scholar]
  • 32.Goodell M.A., Brose K., Paradis G., Conner A.S., Mulligan R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–1806. doi: 10.1084/jem.183.4.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Bertoncello I., Hodgson G.S., Bradley T.R. Multiparameter analysis of transplantable hemopoietic cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp. Hematol. 1985;13:999–1006. [PubMed] [Google Scholar]
  • 34.Spangrude G.J., Johnson G.R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990;87:7433–7437. doi: 10.1073/pnas.87.19.7433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Bertoncello I., Bradley T.R., Watt S.M. An improved negative immunomagnetic selection strategy for the purification of primitive hemopoietic cells from normal bone marrow. Exp Hematol. 1991;19:95–100. [PubMed] [Google Scholar]
  • 36.Li C.L., Johnson G.R. Rhodamine123 reveals heterogeneity within murine Lin−, Sca-1+ hemopoietic stem cells. J Exp Med. 1992;175:1443–1447. doi: 10.1084/jem.175.6.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Uchida N., Jerabek L., Weissman I.L. Searching for hematopoietic stem cells. 2. The heterogeneity of Thy-1.1(lo)Lin(-/lo)Sca-1(+) mouse hematopoietic stem cells separated by counterflow centrifugal elutriation. Exp.Hematol. 1996;24:649–659. [PubMed] [Google Scholar]
  • 38.Martin G.M., Austad S.N., Johnson T.E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet. 1996;13:25–34. doi: 10.1038/ng0596-25. [DOI] [PubMed] [Google Scholar]
  • 39.Martin G.M. Genetics and the pathobiology of ageing. Philos Trans R Soc Lond B Biol Sci. 1997;352:1773–1780. doi: 10.1098/rstb.1997.0161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Bohr V., Anson R.M., Mazur S., Dianov G. Oxidative DNA damage processing and changes with aging. Toxicol.Lett. 1998;103:47–52. doi: 10.1016/S0378-4274(98)00280-X. [DOI] [PubMed] [Google Scholar]
  • 41.Dolle M., Giese H., Hopkins C., Martus H.-J., Hausdorff J., Vijg J. Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat.Genet. 1997;17:431–434. doi: 10.1038/ng1297-431. [DOI] [PubMed] [Google Scholar]
  • 42.Dolle M.E., Snyder W.K., Gossen J.A., Lohman P.H.M., Vijg J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc. Natl. Acad. Sci. USA. 2000;97:8403–8408. doi: 10.1073/pnas.97.15.8403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.DePinho R.A. The age of cancer. Nature. 2000;408:248–254. doi: 10.1038/35041694. [DOI] [PubMed] [Google Scholar]
  • 44.Rohme D. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Natl. Acad. Sci. USA. 1981;78:5009–5013. doi: 10.1073/pnas.78.8.5009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Vaziri H., Dragowska W., Allsopp R.C., Thomas T.E., Harley C.B., Lansdorp P.M. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA. 1994;91:9857–9860. doi: 10.1073/pnas.91.21.9857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Morrison S.J., Prowse K.R., Ho P., Weissman I.L. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5:207–216. doi: 10.1016/S1074-7613(00)80316-7. [DOI] [PubMed] [Google Scholar]
  • 47.Notaro, R., Cimmino, A., Tabarini, D., Rotoli, B. and Luzzatto, L.: In vivo telomere dynamics of human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA., 94: 13782–13785, 1997. [DOI] [PMC free article] [PubMed]
  • 48.Wynn R., Cross M., Hatton C., Will A., Lashford L., Dexter T., Testa N. Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet. 1998;351:178–181. doi: 10.1016/S0140-6736(97)08256-1. [DOI] [PubMed] [Google Scholar]
  • 49.Lee, J.J., Kook, H., Chung, I.J., Kim, H.J., Park, M.R., Kim, C.J., Nah, J.A. and Hwang, T.J.: Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplantation, 411–415, 1999. [DOI] [PubMed]
  • 50.Allsopp R.C., Cheshier S., Weissman I.L. Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J. Exp. Med. 2001;193:917–924. doi: 10.1084/jem.193.8.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Lee H.-W., Blasco M., Gottlieb G., Horner J., Greider C., DePinho R. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–574. doi: 10.1038/33345. [DOI] [PubMed] [Google Scholar]
  • 52.Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167. [DOI] [PubMed] [Google Scholar]
  • 53.Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., Brayton C., Hee Park S., Thompson T., Karsenty G., Bradley A., Donehower L.A. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415:45–53. doi: 10.1038/415045a. [DOI] [PubMed] [Google Scholar]
  • 54.Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 2001;11:S27–31. doi: 10.1016/s0962-8924(01)02151-1. [DOI] [PubMed] [Google Scholar]
  • 55.Schlessinger D., Van Zant G. Does functional depletion of stem cells drive aging? Mech Ageing Dev. 2001;122:1537–1553. doi: 10.1016/S0047-6374(01)00299-8. [DOI] [PubMed] [Google Scholar]
  • 56.Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  • 57.Kimura K., Tissenbaum H., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabitis elegans. Science. 1997;277:942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  • 58.Lin Y.-J., Seroude L., Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998;282:943–946. doi: 10.1126/science.282.5390.943. [DOI] [PubMed] [Google Scholar]
  • 59.Jazwinski S.M. Metabolic control and ageing. Trends Genet. 2000;16:506–511. doi: 10.1016/S0168-9525(00)02119-3. [DOI] [PubMed] [Google Scholar]
  • 60.Arantes-Oliveira N., Apfeld J., Dillin A., Kenyon C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science. 2002;295:502–505. doi: 10.1126/science.1065768. [DOI] [PubMed] [Google Scholar]
  • 61.Flurkey K., Papaconstantinou J., Miller R.A., Harrison D.E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A. 2001;98:6736–6741. doi: 10.1073/pnas.111158898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Bartke A., Wright J.C., Mattison J.A., Ingram D.K., Miller R.A., Roth G.S. Extending the lifespan of long-lived mice. Nature. 2001;414:412. doi: 10.1038/35106646. [DOI] [PubMed] [Google Scholar]
  • 63.Harrison D.E., Astle C.M., Stone M. Effects of age on transplantable primitive immuno-hematopoietic stem cell (PSC) numbers and function. J. Immunol. 1989;142:3833–3840. [PubMed] [Google Scholar]
  • 64.Morrison S.J., Wandycz A.M., Akashi K., Globerson A., Weissman I.L. The aging of hematopoietic stem cells. Nature Med. 1996;2:1011–1016. doi: 10.1038/nm0996-1011. [DOI] [PubMed] [Google Scholar]
  • 65.de Haan G., Van Zant G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood. 1999;93:3294–3301. [PubMed] [Google Scholar]
  • 66.Sudo K., Ema H., Morita Y., Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 2000;192:1273–1280. doi: 10.1084/jem.192.9.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Geiger H., True J.M., de Haan G., Van Zant G. Age-and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood. 2001;98:2966–2972. doi: 10.1182/blood.V98.10.2966. [DOI] [PubMed] [Google Scholar]
  • 68.Harrison D. Long-term erythropoietic repopulating ability of old, young and fetal stem cells. J.Exp.Med. 1983;157:1496–1504. doi: 10.1084/jem.157.5.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Micklem H.S., Ford C.E., Evans E.P., Ogden D.A., Papworth D.S. Competitive in vivo proliferation of foetal and adult hematopoietic cells in lethally irradiated mice. J. Cell Physiol. 1972;79:293–298. doi: 10.1002/jcp.1040790214. [DOI] [PubMed] [Google Scholar]
  • 70.Rebel V.I., Miller C.L., Eaves C.J., Lansdorp P.M. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their adult bone marrow counterparts. Blood. 1996;87:3500–3507. [PubMed] [Google Scholar]
  • 71.Harrison D.E., Zhong R.K., Jordan C.T., Lemischka I.R., Astle C.M. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp.Hematol. 1997;25:293–297. [PubMed] [Google Scholar]
  • 72.Chen J., Astle B.A., Harrison D.E. Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp. Hematol. 1999;27:928–935. doi: 10.1016/S0301-472X(99)00018-1. [DOI] [PubMed] [Google Scholar]
  • 73.Chen J.C., Astle C.M., Harrison D.E. Genetic regulation of primitive hematopoietic stem cell senescence. Exp. Hematol. 2000;28:442–450. doi: 10.1016/S0301-472X(99)00157-5. [DOI] [PubMed] [Google Scholar]
  • 74.Lansdorp P., Dragowska W., Manyani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J.Exp.Med. 1993;178:787–791. doi: 10.1084/jem.178.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Wulf G.G., Jackson K.A., Goodell M.A. Somatic stem cell plasticity. Current evidence and emerging concepts. Exp Hematol. 2001;29:1361–1370. doi: 10.1016/S0301-472X(01)00752-4. [DOI] [PubMed] [Google Scholar]
  • 76.Chu V.T., Gage F.H. Chipping away at stem cells. Proc Natl Acad Sci U S A. 2001;98:7652–7653. doi: 10.1073/pnas.141244198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Lagasse E., Connors H., Al-Dhalmy M., Reitsma M., Dohse M., Osborne L., Wang X., Finegold M., Weissman I.L., Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 2000;6:1229–1234. doi: 10.1038/81326. [DOI] [PubMed] [Google Scholar]
  • 78.Bjornson C.R.R., Rietze R.L., Reynolds B.A., Magli M.C., Vescovi A.L. Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999;283:534–537. doi: 10.1126/science.283.5401.534. [DOI] [PubMed] [Google Scholar]
  • 79.Eglitis M.A., Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl.Acad.Sci. USA. 1997;94:4080–4085. doi: 10.1073/pnas.94.8.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Mezey E., Chandross K.J., Harta G., Maki R.A., McKercher S.R. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779–1782. doi: 10.1126/science.290.5497.1779. [DOI] [PubMed] [Google Scholar]
  • 81.Brazelton T.R., Rossi F.M.V., Keshet G.I., Blau H.M. From marrow to brain: Expression of neuronal phenotypes in adult mice. Science. 2000;290:1775–1779. doi: 10.1126/science.290.5497.1775. [DOI] [PubMed] [Google Scholar]
  • 82.Krause D.S., Theise N.D., Collector M.I., Henegariu O., Hwang S., Gardner R., Neutzel S., Sharkis S.J. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369–377. doi: 10.1016/S0092-8674(01)00328-2. [DOI] [PubMed] [Google Scholar]
  • 83.Goodman J.W., Hodgson G.S. Evidence for stem cells in the peripheral blood of mice. Blood. 1962;19:702–714. [PubMed] [Google Scholar]
  • 84.Wright D.E., Wagers A.J., Gulati A.P., Johnson F.L., Weissman I.L. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294:1933–1936. doi: 10.1126/science.1064081. [DOI] [PubMed] [Google Scholar]
  • 85.Weiner R.S., Richman C.M., Yankee R.A. Semicontinuous flow centrifugation for the pheresis of immunocompetent cells and stem cells. Blood. 1977;49:391–397. [PubMed] [Google Scholar]
  • 86.Richman C.M., Weiner R.S., Yankee R.A. Increase in circulating stem cells following chemotherapy in man. Blood. 1976;47:1031–1039. [PubMed] [Google Scholar]
  • 87.Breems D.A., van Hennik P.B., Kusadasi N., Boudewijn A., Cornelissen J.J., Sonneveld P., Ploemacher R.E. Individual stem cell quality in leukapheresis products is related to the number of mobilized stem cells. Blood. 1996;87:5370–5378. [PubMed] [Google Scholar]
  • 88.Laterveer L., Lindley I.J., Hamilton M.S., Willemze R., Fibbe W.E. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood. 1995;85:2269–2275. [PubMed] [Google Scholar]
  • 89.de Haan G., Loeffler M., Nijhof W. Long-term recombinant human granulocyte colony-stimulating factor (rhG-CSF) treatment severely depresses murine marrow erythropoiesis without causing an anemia. Exp Hematol. 1992;20:600–604. [PubMed] [Google Scholar]
  • 90.Molineux G., Pojda Z., Hampson I.N., Lord B.I., Dexter T.M. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood. 1990;76:2153–2158. [PubMed] [Google Scholar]
  • 91.Kawada H., Ogawa M. Hematopoietic progenitors and stem cells in murine muscle. Blood Cells Mol Dis. 2001;27:605–609. doi: 10.1006/bcmd.2001.0426. [DOI] [PubMed] [Google Scholar]
  • 92.McKinney-Freeman S.L., Jackson K.A., Camargo F.D., Ferrari G., Mavilio F., Goodell M.A. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci U S A. 2002;99:1341–1346. doi: 10.1073/pnas.032438799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Muller-Sieburg C., Riblet R. Genetic control of the frequency of hematopoietic stem cells in mice: Mapping of a candidate locus to chromosome 1. J.Exp.Med. 1996;183:1141–1150. doi: 10.1084/jem.183.3.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.de Haan G., VanZant G. Intrinsic and extrinsic control of hemopoietic stem cell numbers: Mapping of a stem cell gene. J.Exp.Med. 1997;186:529–536. doi: 10.1084/jem.186.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.de Haan G., Van Zant G. Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J. 1999;13:707–713. doi: 10.1096/fasebj.13.6.707. [DOI] [PubMed] [Google Scholar]
  • 96.Roberts, A., Hasegawa, M., Metcalf, D. and Foote, S.: Genetic influences determining in vivo responses to granulocyte colony-stimulating factor. Blood, Reviewed: 1999. [PubMed]
  • 97.Hasegawa M., Baldwin T.M., Metcalf D., Foote S.J. Progenitor cell mobilization by granulocyte colony-stimulating factor controlled by loci on chromosomes 2 and 11. Blood. 2000;95:1872–1874. [PubMed] [Google Scholar]
  • 98.Chen J., Astle C.M., Muller-Sieburg C.E., Harrison D.E. Primitive hematopoietic stem cell function in vivo is uniquely high in the CXB-12 mouse strain. Blood. 2000;96:4124–4131. [PubMed] [Google Scholar]
  • 99.Morrison S.J., Qian D., Jerabek L., Thiel B.A., Park I.K., Ford P.S., Kiel M.J., Schork N.J., Weissman I.L., Clarke M.F. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol. 2002;168:635–642. doi: 10.4049/jimmunol.168.2.635. [DOI] [PubMed] [Google Scholar]
  • 100.Capecchi M.R. Choose your target. Nat Genet. 2000;26:159–161. doi: 10.1038/82825. [DOI] [PubMed] [Google Scholar]
  • 101.Brown S.D., Bailing R. Systematic approaches to mouse mutagenesis. Curr Opin Genet Dev. 2001;11:268–273. doi: 10.1016/S0959-437X(00)00189-1. [DOI] [PubMed] [Google Scholar]
  • 102.Herron B.J., Lu W., Rao C., Liu S., Peters H., Bronson R.T., Justice M.J., McDonald J.D., Beier D.R. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet. 2002;30:185–189. doi: 10.1038/ng812. [DOI] [PubMed] [Google Scholar]
  • 103.Stanford W.L., Cohn J.B., Cordes S.P. Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet. 2001;2:756–768. doi: 10.1038/35093548. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the American Aging Association are provided here courtesy of American Aging Association

RESOURCES