Skip to main content
Age logoLink to Age
. 1997 Jul;20(3):127–140. doi: 10.1007/s11357-997-0012-2

Xanthine dehydrogenase/xanthine oxidase and oxidative stress

Hae Young Chung 1,, Bong Sook Baek 1, Sang Ho Song 1, Myoung Sook Kim 1, Jung Im Huh 1, Kyung Hee Shim 1, Kyu Won Kim 2, Kyung Hee Lee 1
PMCID: PMC3455892  PMID: 23604305

Abstract

Xanthine dehydrogenase (XDH) and xanthine oxidase (XOD) are single-gene products that exist in separate but interconvertible forms. XOD utilizes hypoxanthine or xanthine as a substrate and O2 as a cofactor to produce superoxide (·O2) and uric acid. XDH acts on these same substrates but utilizes NAD as a cofactor to produce NADH instead of ·O2 and uric acid. XOD has been proposed as a source of oxygen radicals in polymorphonuclear, endothelial, epithelial, and connective tissue cells. However, several questions remain about the physiological significance and functions of XOD on aging and oxidative stress. XOD is reported to play an important role in cellular oxidative status, detoxification of aldehydes, oxidative injury in ischemia-reperfusion, and neutrophil mediation. For example, XOD may serve as a messenger or mediator in the activation of neutrophil, T cell, cytokines, or transcription in defense mechanisms rather than as a free radical generator of tissue damage. Emerging evidence on the synergistic interactions of ·O2, a toxic product of XOD and nitric oxide, may be another illustration of XOD involvement in tissue injury and cytotoxicity in an emergent condition such as ischemia or inflammation.

Key words: Xanthine dehydrogenase, Xanthine oxidase, Aging, Oxidative stress

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

References

  • 1.Yu B.P. Aging and oxidative stress: Modulation by dietary restriction. Free Rad. Biol. Med. 1996;21:651–668. doi: 10.1016/0891-5849(96)00162-1. [DOI] [PubMed] [Google Scholar]
  • 2.Halliwell B. Oxidants and human disease: some new concepts. FASEB. J. 1987;1:358–364. [PubMed] [Google Scholar]
  • 3.Oberley L.W. Pathological states. ed. 3. Boca Raton, FL: CRC press; 1985. Superoxide dismutase; p. 438. [Google Scholar]
  • 4.Rotilio G. Superoxide and superoxide dismutase in chemistry, biology and medicine. Amsterdam: Elsevier Science Publishers; 1986. p. 749. [Google Scholar]
  • 5.Ames B.N. Endogenous oxidative DNA damage, aging, and cancer. Free Rad. Res. Comm. 1989;7:121–128. doi: 10.3109/10715768909087933. [DOI] [PubMed] [Google Scholar]
  • 6.Goldstein B.D., Witz G. Free radicals and carcinogenesis. Free Rad. Res. Comm. 1990;11:3–10. doi: 10.3109/10715769009109662. [DOI] [PubMed] [Google Scholar]
  • 7.Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett. 1988;241:1–5. doi: 10.1016/0014-5793(88)81018-4. [DOI] [PubMed] [Google Scholar]
  • 8.Angermuller S., Bruder G., Völkl A., Wesch H., Fahimi H.D. Localization of xanthine oxidase in crystalline cores of peroxysomes. A cytochemical and biochemical study. Eur. J. Cell Biol. 1987;45:137–144. [PubMed] [Google Scholar]
  • 9.Freeman B.A., Crapo J.D. Biology of disease. Free radicals and tissue injury. Lab Invest. 1982;47:412–426. [PubMed] [Google Scholar]
  • 10.Halliwell B., Gutteridge J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  • 11.Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.: Proteolytic conversion of xanthine dehydrogenases from the NAD-dependent type to the O2-dependent type. J. Biol. Chem., 265: 14170–14175, 1990. [PubMed]
  • 12.Della Corte E., Stripe F. The regulation of rat liver xanthine oxidase: Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J. 1972;126:739–745. doi: 10.1042/bj1260739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ames B.N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides antioxidant defense in humans against oxidant and radical caused aging and cancer. Proc. Nat. Acad. Sci. USA. 1981;78:6858–6862. doi: 10.1073/pnas.78.11.6858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Howell R.R., Wyngaarden J.B. On the mechanism of peroxidation of uric acid by homoproteins. J. Biol. Chem. 1960;235:3544–3549. [PubMed] [Google Scholar]
  • 15.Kellogg E.W., Fridovich I. Liposome oxidation and erythrocyte lysis by enzymatically generated superoxide and hydrogen peroxide. J. Biol. Chem. 1977;252:6721–6727. [PubMed] [Google Scholar]
  • 16.Davier K.J., Seranian A., Muakkassah-Kelly S.F., Hochstein P. Uric acid-iron ion complexes. Biochem. J. 1986;235:747. doi: 10.1042/bj2350747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bray R.C. Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: Boyer P.D., editor. Part B, The Enzymes. 3rd ed. New York: Academic Press; 1975. pp. 299–419. [Google Scholar]
  • 18.Hille R., Massey V. In: Molybdenum-containing hydroxylase: Xanthine oxidase, aldehyde oxidase, and sulfite oxidase in Molybdenum Enzymes. Spiro T.G., editor. New York: Wiley-Interscience; 1985. pp. 443–518. [Google Scholar]
  • 19.Waud W.R., Rajagopalan K.V. The mechanism of conversion of rat river xanthine dehydrogenase from an NAD-dependent form (type D) to an O2-dependent type (type O) Arch. Biochem. Biophys. 1976;172:354–364. doi: 10.1016/0003-9861(76)90087-4. [DOI] [PubMed] [Google Scholar]
  • 20.Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.: Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. J. Biol. Chem., 265: 14170–14175, 1990. [PubMed]
  • 21.Nagler L.G., Vartanyan L.S. Subunit structure of bovine milk xanthine oxidase. Biochim. Biophys. Acta. 1976;427:78–90. doi: 10.1016/0005-2795(76)90287-7. [DOI] [PubMed] [Google Scholar]
  • 22.Ichida K., Amaya Y., Noda K., Minoshima S., Hosoya T., Sakai O., Shimizu N., Nishino T. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): Structural analysis of the protein and chromosomal location of the gene. Gene. 1993;133:279–284. doi: 10.1016/0378-1119(93)90652-J. [DOI] [PubMed] [Google Scholar]
  • 23.Terao M., Cazzaniga G., Ghezzi P., Bianchi M., Falciani F., Perani P., Garattini E. Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Biochem. J. 1992;283:863–870. doi: 10.1042/bj2830863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Nishino T., Nishino T., Sato A., Page T., Amaya Y. In: Xanthine dehydrogenase: Structure and properties in Flavins and Flavoproteins. Yagi K., editor. Berlin: Walter de Gruyter; 1984. p. 699. [Google Scholar]
  • 25.Keith R.P., Riley M.J., Kreitman M., Lewontin R.C., Curtis D., Chambers G. Sequence of the structural gene for xanthine dehydrogenase (rosy locus) in Drosophila melanogaster. Genetics. 1987;116:67–73. doi: 10.1093/genetics/116.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Nishino T., Nishino T. The nicotinamide adenine dinucleotide-binding site of chicken liver xanthine dehydrogenase. J. Biol. Chem. 1989;264:5468–5473. [PubMed] [Google Scholar]
  • 27.Wooton J.C., Nicolson R.E., Cock J.M., Walters D.E., Burke J.F., Doyle W.A., Bray R.C. Enzymes depending on the pterin molybdenum cofactor: Sequence families spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim. Biophys. Acta. 1991;1057:157–185. doi: 10.1016/s0005-2728(05)80100-8. [DOI] [PubMed] [Google Scholar]
  • 28.Nakamura M., Yamazaki I. Preparation of bovine milk xanthine oxidase as a dehydrogenase form. J. Biochem. 1982;92:1279–1286. doi: 10.1093/oxfordjournals.jbchem.a134046. [DOI] [PubMed] [Google Scholar]
  • 29.Hunt, J., and Massey, V.: Purification and properties of milk xanthine dehydrogenase. J. Biol. Chem., 267: 21479–21485, 1992. [PubMed]
  • 30.Saito T. The properties of sulfhydryl groups involved in the interconversion between the NAD+-dependent and O2-dependent types of rat liver xanthine dehydrogenase. Yokohama Med. Bull. 1987;38:151–168. [Google Scholar]
  • 31.Saito, T., and Nishino, T.: Differences in redox and kinetic properties between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase. J. Biol. Chem., 264: 10015–10022, 1989. [PubMed]
  • 32.Nishino T., Nishino T., et al. The mechanism of xanthine dehydrogenase to oxidase and the role of the enzyme in reperfusion injury. In: Harkness R.A., et al., editors. Part A, Purine and pyrimidine metabolism in man. New York: Plenum Press; 1991. p. 327. [Google Scholar]
  • 33.Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.: Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. J. Biol. Chem., 265: 14170–14175, 1990. [PubMed]
  • 34.Olson J.S., Ballou D.P., Palmer G., Massey V. The mechanism of action of xanthine oxidase. J. Biol. Chem. 1974;249:4363–4382. [PubMed] [Google Scholar]
  • 35.Nishino T., Nishino T., Schopfer L.M., Massey V. The reactivity of chicken liver xanthine dehydrogenase with molecular oxygen. J. Biol. Chem. 1989;264:2518–2527. [PubMed] [Google Scholar]
  • 36.Kooij A., Bosch K.S., Frederiks W.M., Vannoorden C.J.F. High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective-tissue cells — A relation between localization and function. Virchows Archiv B-Cell Patholology including Molecular Pathology. 1992;62:143–150. doi: 10.1007/BF02899676. [DOI] [PubMed] [Google Scholar]
  • 37.Reniers J.J., Rupp T., Conti C.J. Modulation of xanthine dehydrogenase and oxidase activities during the hormonal induction of vaginal epithelial differentiation in ovariectomized mice. Differentiation. 1991;47:69–75. doi: 10.1111/j.1432-0436.1991.tb00224.x. [DOI] [PubMed] [Google Scholar]
  • 38.Reniers J.J., Rupp T. Conversion of xanthine dehydrogenase to xanthine oxidase during keratinocyte differentiation: modulation by 12-O-tetradecanoylphorbol-13-acetate. J. Invest. Dermatol. 1989;93:132–135. doi: 10.1111/1523-1747.ep12277382. [DOI] [PubMed] [Google Scholar]
  • 39.Allen R.G., Balin A.K. Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Rad. Biol. Med. 1989;6:631–661. doi: 10.1016/0891-5849(89)90071-3. [DOI] [PubMed] [Google Scholar]
  • 40.Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994;74:139–155. doi: 10.1152/physrev.1994.74.1.139. [DOI] [PubMed] [Google Scholar]
  • 41.Davies K.J.A., Sevanian A., Muakkassah-Kelly S.F., Hochstein P. Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem J. 1986;235:747–754. doi: 10.1042/bj2350747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Groolveld M., Halliwell B. Measurement of allontoin and uric acid in human body fluids. A potential index of free radical reaction in vivo? Biochem. J. 1987;243:803–808. doi: 10.1042/bj2430803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Farber J.L., Kyle M.E., Coleman J.B. Biology of disease. Mechanism of cell injury by activated oxygen species. Lab. Invest. 1990;62:670–679. [PubMed] [Google Scholar]
  • 44.Dobashi K., Asayama K., Kato K., Kobayash M., Kawaoi A. Immunohistochemical localization of copper-zinc and manganese superoxide dismutase in rat tissues. Acta. Histochem. Cytochem. 1989;22:351–365. [Google Scholar]
  • 45.Oberley T.D., Oberley L.W., Slattery A.F., Lauchner L.J., Elwell J.H. Immuno-histochemical localization of antioxidant enzymes in adult syrian hamster tissues and during kidney development. Am. J. Pathol. 1990;137:199–214. [PMC free article] [PubMed] [Google Scholar]
  • 46.Aruoma O.I., Halliwell B. Inactivation of α1-antiproteinase by hydroxyl radicals. The effect of uric acid. FEBS. Lett. 1989;244:76–80. doi: 10.1016/0014-5793(89)81166-4. [DOI] [PubMed] [Google Scholar]
  • 47.Terao J., Nagao A. Antioxidative effect of human saliva on lipid peroxidation. Agric. Biol. Chem. 1990;55:869–872. [Google Scholar]
  • 48.Elsayed N.M., Tierney D.F. Hyperoxia and xanthine dehydrogenasel/oxidase activities in rat lung and heart. Arch. Biochem. Biophys. 1989;273:281–286. doi: 10.1016/0003-9861(89)90485-2. [DOI] [PubMed] [Google Scholar]
  • 49.Becker B.F., Reinholz N., Özçelik T., Leipert B., Gerlach E. Uric acid as radical scavenger and antioxidant in the heart. Pflügers. Arch. 1989;415:127–135. doi: 10.1007/BF00370582. [DOI] [PubMed] [Google Scholar]
  • 50.Topham R.W., Walker M.C., Calisch M.P. Liver xanthine dehydrogenase and iron mobilization. Biochem. Biophys. Res. Commun. 1982;109:1240–1246. doi: 10.1016/0006-291x(82)91910-6. [DOI] [PubMed] [Google Scholar]
  • 51.Topham R.W., Walker M.C., Calisch M.P., Williams R.W. Evidence for the participation of intestinal xanthine oxidase in the mucosal processing of iron. Biochemistry. 1982;21:4529–4535. doi: 10.1021/bi00262a002. [DOI] [PubMed] [Google Scholar]
  • 52.Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Rad. Biol. Med. 1991;11:81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  • 53.Chen J.J., Bertrand H., Yu B.P. Inhibition of adenine nucleotide translocase by lipid peroxidation by products. Free Rad. Biol. Med. 1995;19:583–590. doi: 10.1016/0891-5849(95)00066-7. [DOI] [PubMed] [Google Scholar]
  • 54.Kristal B.S., Park B.K., Yu B.P. 4-Hydroxyhexenal is a potent inducer of the mitochondrial transition. J. Biol. Chem. 1996;271:6033–6038. doi: 10.1074/jbc.271.11.6033. [DOI] [PubMed] [Google Scholar]
  • 55.Eckl P., Esterbauer H. Genotoxic effects of 4-hydroxyalkenals. Adv. Biosci. 1989;76:141–157. [Google Scholar]
  • 56.Kato S., Kawase T., Alderman J., Inatomi N., Lieber C.S. Role of xanthine oxidase in ethanol-induced lipid peroxidation in rats. Gastroenterol. 1990;98:203–210. doi: 10.1016/0016-5085(90)91311-s. [DOI] [PubMed] [Google Scholar]
  • 57.Bailey S.M., Reinke L.A. Potential antioxidant function of xanthine oxidase in low flow ischemia-reperfusion. FASEB J. 1996;10:4280–4280. [Google Scholar]
  • 58.Tan S., Radi R., Gaudier F., Evans R.A., Rivera A., Kirk K.A., Parks D.A. Physiological levels of uric acid inhibit xanthine oxidase in human plasma. Pediatric Res. 1993;34:303–307. doi: 10.1203/00006450-199309000-00013. [DOI] [PubMed] [Google Scholar]
  • 59.Radi R., Tan S., Prodanov E., Evans R., Parks D.A. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production. Biochem. Biophys, Acta. 1992;1122:178–182. doi: 10.1016/0167-4838(92)90321-4. [DOI] [PubMed] [Google Scholar]
  • 60.Becker B.F. Towards the physiological function of uric acid. Free Rad. Biol. Med. 1993;14:615–631. doi: 10.1016/0891-5849(93)90143-I. [DOI] [PubMed] [Google Scholar]
  • 61.Askison D., Hollwagth M.E., Benoit J.N., Parks D.A., McCord J.M., Granger D.N. Role of free radicals in ischemia-reperfusion injury to the liver. Acta. Physiol. Scand. 1986;548:101–107. [PubMed] [Google Scholar]
  • 62.Granger D.N., Hollwarth M.E., Parks D.A. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta. Physiol. Scand. Suppl. 1986;548:47–63. [PubMed] [Google Scholar]
  • 63.Abe K., Yuki S., Kogure K. Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke. 1988;19:480–485. doi: 10.1161/01.str.19.4.480. [DOI] [PubMed] [Google Scholar]
  • 64.Asano T., Johshita H., Koide T., Takakkura K. Amelioration of ischaemic cerebral edema by a free radical scavenger, AVS; 1,2-bis(nicoti-amido)-propane. An experimental study using a regional ischaemia model in cats. Neurol. Res. 1984;6:163–168. doi: 10.1080/01616412.1984.11739683. [DOI] [PubMed] [Google Scholar]
  • 65.Hall E.D., Pazara K.E., Braughler J.M. 21-Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke. 1988;19:997–1002. doi: 10.1161/01.str.19.8.997. [DOI] [PubMed] [Google Scholar]
  • 66.Johshita H., Asano T., Hanamura T., Takakura K. Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke. 1989;20:788–794. doi: 10.1161/01.str.20.6.788. [DOI] [PubMed] [Google Scholar]
  • 67.Liu T.H., Beckman S., Freeman B.A., Hogan E.L., Hsu C.Y. Poluethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am. J. Physiol. 1989;256:H589–H593. doi: 10.1152/ajpheart.1989.256.2.H589. [DOI] [PubMed] [Google Scholar]
  • 68.Martz D., Beer M., Betz A.L. Dimethylthiourea reduces ischemic brain edema without affecting cerebral blood flow. J.Cereb. Blood Flow Metab. 1990;10:352–357. doi: 10.1038/jcbfm.1990.64. [DOI] [PubMed] [Google Scholar]
  • 69.Martz D., Rayos G., Schielke G.P., Betz A.L. Allopurinol and dimethylthiou reduce brain infarction following middle cerebral artery occlusion in rats. Stroke. 1989;20:488–494. doi: 10.1161/01.str.20.4.488. [DOI] [PubMed] [Google Scholar]
  • 70.Patt A., Harken H.A., Burton L.K., Rodell T.C., Piermattei D., Schorr W.J., Parker N.B., Berger E.M., Horesh I.R., Terada L.S., Linas S.L., Cheronis J.C., Repine J.E. Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J. Clin. Invest. 1988;81:1556–1562. doi: 10.1172/JCI113488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Watson B.D., Busto R., Goldberg W.J., Santiso M., Yoshida S., Ginsberg M.D. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J. Neurochem. 1984;42:268–274. doi: 10.1111/j.1471-4159.1984.tb09728.x. [DOI] [PubMed] [Google Scholar]
  • 72.Young W., Wojak J.C., Decrescito V. 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke. 1988;19:1013–1019. doi: 10.1161/01.str.19.8.1013. [DOI] [PubMed] [Google Scholar]
  • 73.McCord J.M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 1985;312:159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  • 74.Grum C.M., Ragsdale R.A., Ketai L.H., Shlafer M. Absence of xanthine oxidase or xanthine dehydrogenase in the rabbit myocardium. Biochem. Biophys. Res. Commun. 1986;141:1104–1108. doi: 10.1016/S0006-291X(86)80157-7. [DOI] [PubMed] [Google Scholar]
  • 75.Parks D.A., Williams T.K., Beckman J.S. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am. J. Physiol. 1988;254:G768–G774. doi: 10.1152/ajpgi.1988.254.5.G768. [DOI] [PubMed] [Google Scholar]
  • 76.Betz A.L. Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J. Neurochem. 1985;44:574–579. doi: 10.1111/j.1471-4159.1985.tb05451.x. [DOI] [PubMed] [Google Scholar]
  • 77.Kanemitsu H., Tamura A., Kirino T., Karasawa S., Sano K., Iwamoto T., Yoshiura M., Iriyama K. Xanthine oxidase and uric acid levels in rat brain following focal ischmia. J. Neurochem. 1988;51:1982–1985. doi: 10.1111/j.1471-4159.1988.tb01172.x. [DOI] [PubMed] [Google Scholar]
  • 78.Kanemitsu H., Tamura A., Kirino T., Oka H., Sano K., Iwamoto T., Yoshiura M., Iriyama K. Allopuronol inhibits uric acid stimulation in the rat brain following focal cerebral ischemia. Brain Res. 1989;49:367–370. doi: 10.1016/0006-8993(89)90786-5. [DOI] [PubMed] [Google Scholar]
  • 79.Nihei H., Kanemitsu H., Tamura A., Oka H., Sano K. Cerebral uric acid, xanthine, and hypoxanthine after ischemia: the effect of allopurinol. Neurosurgery. 1989;25:613–617. doi: 10.1097/00006123-198910000-00016. [DOI] [PubMed] [Google Scholar]
  • 80.Werns S.W., Shea M.J., Mitsos S.E., Dysko R.C., Fantone J.C., Schork M.A., Abrams G.D., Pitt B., Lucchesi J.C. Reduction of the size of infarction by allopurinol in the ischemic-reperfused canine heart. Circulation. 1988;73:518–524. doi: 10.1161/01.cir.73.3.518. [DOI] [PubMed] [Google Scholar]
  • 81.Krenitsky T.A., Tuttle J.V., Cattau E.L., Jr., Wang P. A comparison of the distribution and electron acceptor specificities of xanthine oxidase and aldehyde oxidase. Comparative Biochem. Physiol. B. 1974;49:687–703. doi: 10.1016/0305-0491(74)90256-9. [DOI] [PubMed] [Google Scholar]
  • 82.Wajner M., Harkness R.A. Distribution of xanthine dehydrogenase and oxidase activities in human and tissues. Biochim. Biophys. Acta. 1989;991:79–84. doi: 10.1016/0304-4165(89)90031-7. [DOI] [PubMed] [Google Scholar]
  • 83.Godin D.V., Bhimji S. Effects of allopurinol on myocardial ischemic injury produced by coronary artery ligation and reperfusion. Biochem. Pharmacol. 1987;36:2101–2107. doi: 10.1016/0006-2952(87)90137-7. [DOI] [PubMed] [Google Scholar]
  • 84.Myers C.L., Weiss S.J., Kirsh M.M., Shepard B.M., Shlafer M. Effects of supplementing hypothermic crystalloid carioplegic solution with catalase, superoxide dismitase, allopurinol, or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. J. Thorac. Cardiovasc. Surg. 1986;91:281–289. [PubMed] [Google Scholar]
  • 85.Terada L.S., Leff J.A., Repine J.E. Measurement of xanthine oxidase in biological tissues. Methods Enzymol. 1990;186:651–656. doi: 10.1016/0076-6879(90)86161-N. [DOI] [PubMed] [Google Scholar]
  • 86.Granger, D.N.: Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol., 255: H1269–H1275, 1988. [DOI] [PubMed]
  • 87.Suzuki, M., Inauen, W., Kvietys, P.R., Grisham, M.B., Meininger, C., Scheling, M.E., Granger, H.J., and Granger, D.N.: Superoxide mediates reperfusion-induced leukocyte-endothelial cell interaction. Am. J. Physiol., 257: H1740–H1745, 1989. [DOI] [PubMed]
  • 88.Maliski T., Tah Z., Grinfeel D.S., Patton S., Kaptruczak M., Tomboulian P. Diffusion of nitric oxide in the wall monitored in situ by porphyrinic microsensors. Biochem Biophys. Res. Commun. 1993;193:1076–1082. doi: 10.1006/bbrc.1993.1735. [DOI] [PubMed] [Google Scholar]
  • 89.Blough N.V., Zafiriou O.C. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg. Chem. 1985;24:3502–3504. doi: 10.1021/ic00216a003. [DOI] [Google Scholar]
  • 90.Moreno J.J., Pryor W.A. Inactivation of α-1-proteinase inhibitor by peroxynitrite. Chem. Res. Toxicol. 1992;5:425–431. doi: 10.1021/tx00027a017. [DOI] [PubMed] [Google Scholar]
  • 91.Ischiropoulos H., Zhu L., Beckman J.S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 1992;298:446–451. doi: 10.1016/0003-9861(92)90433-W. [DOI] [PubMed] [Google Scholar]
  • 92.Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Archiv. Biochem. Biophys. 1991;288:481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  • 94.Stamler J.S., Simon D.I., Osborne J.A., Mullins M.E., Jaraki O., Michel T., Single D.J., Loscalzo J.S. Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA. 1992;89:444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls. J. Biol. Chem. 1991;266:4244–4250. [PubMed] [Google Scholar]
  • 96.Moncada S., Palmer R.M.J., Higgs E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991;43:109–142. [PubMed] [Google Scholar]
  • 97.Marletta M.A. Nitric oxide; Biosynthesis and biological significance. Trends Biochem. Sci. 1989;14:488–492. doi: 10.1016/0968-0004(89)90181-3. [DOI] [PubMed] [Google Scholar]
  • 98.Dawson V.L., Dawson T.M., London E.D., Nredt D.S., Snyder S.H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA. 1991;88:6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Matheis G., Sherman M.P., Buckberg G.D., Haybron D.M., Young H.H., Ignarro L.J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am. J. Physiol. 1992;262:H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
  • 100.Koppenol W.H., Pryor W.A., Moreno J.J., Ischiropoulos H., Beckman J.S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 1992;5:834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  • 101.Moncada C., Lekieffre D., Arvin B., Meldrum B. Effect of NO synthase inhibition on NMDA-induced and ischemia-induced hippocampal-lesions. Neuroreports. 1992;3:530–532. [PubMed] [Google Scholar]
  • 102.Nagafuji T., Matsui T., Koide T., Asano T. Blockade of nitric-oxide formation by N-ω-Nitro-L-arginine Mitigates ischemic brain edema and subsequent cerebral infarction in rats. Neurosci. Lett. 1992;147:159–162. doi: 10.1016/0304-3940(92)90584-T. [DOI] [PubMed] [Google Scholar]
  • 103.Galea, E., Feinstein, D.L., and Reis, D.J.: Induction of calcium-independent nitric-oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA, 89: 10945–10949, 1992. [DOI] [PMC free article] [PubMed]
  • 104.Buisson A., Plotkine M., Boulu R.G. The neuroprotective effect of a nitric-oxide inhibitor in a rat model of focal cerebral-ischemia. Br. J. Pharmacol. 1992;106:766–767. doi: 10.1111/j.1476-5381.1992.tb14410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Beckman J.S. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J. Dev. Physiol. 1991;15:53–59. [PubMed] [Google Scholar]
  • 106.Morikawa, E., Huang, Z., and Moskowitz, M.A.: L-arginine decreases infarct size caused by middle cerebral arterial-occlusion in SHR. Am. J. Physiol., 263: H1632–H1635, 1992. [DOI] [PubMed]
  • 107.Padmaja S., Huie R.E. The reaction of NO with superoxide. Free Rad. Res. Comms. 1993;18:195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  • 108.Siegfried M.R., Erhardt J., Rider T., Ma X.L., Lefer A.M. Cardioprotection and attenuation of endothelial dysfunction by organic nitric-oxide donors in cyocardial ischemia-reperfusion. J. Pharmacol. Exp. Ther. 1992;260:668–675. [PubMed] [Google Scholar]
  • 109.Gambassi F., Pistelli A., Dibello V.G., Lupini M., Mannaioni P.F., Masini E. Ischemia-reperfusion injury and histamine-release in isolated perfused guinea-pig heart. — Effects of nitric-oxide generators. Pharmacol. Res. 1992;25:11–12. doi: 10.1016/1043-6618(92)90516-E. [DOI] [PubMed] [Google Scholar]
  • 110.Linz W., Wiemer G., Scholkens B.A. ACE-inhibition induces NO-formation in cultured bovine endothelial-cells and protects isolated ischemic rat hearts. J. Mol. Cell Cardiol. 1992;24:909–919. doi: 10.1016/0022-2828(92)91103-C. [DOI] [PubMed] [Google Scholar]
  • 111.McDonald L.J., Murad F. Nitric oxide and cyclic GMP signaling. Proc. Soc. Exp. Biol. Med. 1996;211:1–6. doi: 10.3181/00379727-211-43950a. [DOI] [PubMed] [Google Scholar]
  • 112.Ulrich F., Hartmut K. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch Pharmacol. 1995;352:351–364. doi: 10.1007/BF00172772. [DOI] [PubMed] [Google Scholar]
  • 113.Pollock J.S., Förstermann U., Tracey W.R., Nakane M. Nitric oxide synthase isozymes antibodies. Histochemical Journal. 1995;27:738–744. [PubMed] [Google Scholar]
  • 114.Bredt D.S., Hwang P.M., Glatt C.E., Lowenstein C., Reed R.R., Snyder S.H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991;351:714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  • 115.Nathan C., Xie Q. Nitric oxide synthase: role, tolls, and controls. Cell. 1994;78:915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  • 116.Bredt S., Synder S. H. Nitric oxide a novel neuronal messenger. Neuron. 1992;8:3–11. doi: 10.1016/0896-6273(92)90104-L. [DOI] [PubMed] [Google Scholar]
  • 117.Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992;6:3051–3064. [PubMed] [Google Scholar]
  • 118.Bredt D.S., Hwang P.M., Synder S.H. Localization of nitric oxide synthase indicating a neuronal role for nitric oxide. Nature. 1990;347:768–769. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  • 119.Pollock, J.S., Fostermann, U., Mitchell, J.A., Warner, T.D., Schmidt, H., Nakang, M., and Murad, F.: Purification and characterization of particulate EDRF synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA., 88: 10480–10484, 1991. [DOI] [PMC free article] [PubMed]
  • 120.Sessa W.C., Harrison J.K., Luthin D.R., Pollock J.S., Lynch K.R. Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase. Hypertension. 1993;21:934–938. doi: 10.1161/01.hyp.21.6.934. [DOI] [PubMed] [Google Scholar]
  • 121.Marsden, P.A., Heng, H.H.Q., Scherer, S.W., Stewart, R.J., Hall, A.V., Shi, X.M., Tsui, L.C., and Schappert, K.T.: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem., 268: 17478–17488, 1993. [PubMed]
  • 122.Kaoru M., Takeshi K., Kazuhiro S., Yoshiki Y., Katsumi T., Li-Xia Y., Ryuichi H., Takeshi A., Yasutake Y., Yoshinori D., Shohei O., Kozo H., Chuichi K., Shigetake S., Yutaka S. Cloning and structure characterization of the human endothelial nitric oxide synthase gene. FEBS, EJB. 1994;94:719–726. [Google Scholar]
  • 123.Sessa, W.C., Harrision, J.K., Barber, C.M., Zeng, D., Durieux, M.E., D’Angelo, D.D., Lynch, K.R., and Peach, M.J.: Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthse. J. Biol. Chem., 267: 15274–15276, 1992. [PubMed]
  • 124.Janssens, S.P., Shimouchi, A., Quertermous, T., Block, D.B., and Block, K.D.: Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem., 267: 14519–14522, 1992. [PubMed]
  • 125.David S.B., Solomon H.S. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 1990;87:682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Cras T.D., Xue C., Rengasamy A., Johns R.A. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am. J. Physiol-Lung Cell. Mol. Physiol. 1996;270:L164–L170. doi: 10.1152/ajplung.1996.270.1.L164. [DOI] [PubMed] [Google Scholar]
  • 127.Kumura E., Yoshimine T., Iwatsuki K., Yamanaka K., Tanaka S., Hayakawa T., Shiga T., Kosaka H. Generation of nitric oxide and superoxide during reperfusion after focal cerebral-ischemia in rats. Am. J. Physiol-Cell Physiol. 1996;39:C748–C752. doi: 10.1152/ajpcell.1996.270.3.C748. [DOI] [PubMed] [Google Scholar]
  • 128.Cazevielle C., Muller A., Meynier F., Bonne C. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Rad. Biol. Med. 1993;14:389–395. doi: 10.1016/0891-5849(93)90088-C. [DOI] [PubMed] [Google Scholar]
  • 129.Synder S.H., Bredt D.S. Nitric oxide as a neuronal messenger. Trends Pharmacol. Sci. 1991;12:125–128. doi: 10.1016/0165-6147(91)90526-X. [DOI] [PubMed] [Google Scholar]
  • 130.Garthwaite G., Garthwaite J. Cyclic GMP and cell death in rat cerebellar slices. Neurosci. 1988;26:321–326. doi: 10.1016/0306-4522(88)90148-0. [DOI] [PubMed] [Google Scholar]
  • 131.Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite; Implication for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. Biol. Chem. 1991;266:4244–4250. [PubMed] [Google Scholar]
  • 133.Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite-induced membrane lipid peroxidation; The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991;288:481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  • 134.Hogg N., Darley-Usmer V.M., Wilson M.T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J. 1992;281:419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Blough N.V., Zafiriou O.C. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg. Chem. 1985;24:3502–3504. doi: 10.1021/ic00216a003. [DOI] [Google Scholar]
  • 136.Slater T.F. Chemical reactions of free radicals. In: Slater T.F., editor. Free Radical Mechanisms in Tissue Injury. London: Pion Limited; 1972. pp. 21–33. [Google Scholar]
  • 137.Harman D. The aging process. Proc. Natl. Acad. Sci. USA. 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Haining J.L., Leagan J.S., Lovell W.J. Synthesis and degradation of rat liver xanthine oxidase as a function of age and protein deprivation. J. Gerontol. 1970;25:205–209. doi: 10.1093/geronj/25.3.205. [DOI] [PubMed] [Google Scholar]
  • 139.Janssen M., Dejong J.W., Pasini E., Ferrari R. Myocardial xanthine oxidoreductase activity in hypertensive and hypercholesterolemic rats. Cardioscience. 1993;4:25–29. [PubMed] [Google Scholar]
  • 140.Chung H.Y., Yu B.P. Regulation of the rat xanthine dehydrogenase/oxidase and uric acid formation by aging and dietary restriction. AGE. 1995;18:218. [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES