Abstract
This article describes new methods to characterize epidemiologic contact networks that involve links that are being dynamically formed and dissolved. The new social network measures are designed with an epidemiologic interpretation in mind. These methods are intended to capture dynamic aspects of networks related to their potential to spread infection. This differs from many social network measures that are based on static networks. The networks are formulated as transmission graphs (TGs), in which nodes represent relationships between two individuals and directed edges (links) represent the potential of an individual in one relationship to carry infection to an individual in another relationship. Network measures derived from transmission graphs include “source counts,” which are defined as the number of prior relationships that could potentially transmit infection to a particular node or individual.
Keywords: Contact network, Mathematical models, Network measures
Full Text
The Full Text of this article is available as a PDF (236.2 KB).
References
- 1.Rothenberg R, Narramore J. The relevance of social network concepts to sexually transmitted disease control. Sex Transm Dis. 1996;23:24–29. doi: 10.1097/00007435-199601000-00007. [DOI] [PubMed] [Google Scholar]
- 2.Rothenberg R, Sterk C, Toomey K, et al. Using social network and ethnographic tools to evaluate syphilis transmission. Sex Transm Dis. 1998;25:154–160. doi: 10.1097/00007435-199803000-00009. [DOI] [PubMed] [Google Scholar]
- 3.Rothenberg R, Potterat J, Woodhouse D, Muth S, Darrow W, Klovdahl A. Social network dynamics and HIV transmission. AIDS. 1998;12:1529–1536. doi: 10.1097/00002030-199812000-00016. [DOI] [PubMed] [Google Scholar]
- 4.Ghani A, Swinton J, Garnett G. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex Transm Dis. 1997;24:45–56. doi: 10.1097/00007435-199701000-00009. [DOI] [PubMed] [Google Scholar]
- 5.Morris M, Kretzschmar M. Concurrent partnerships and transmission dynamics in networks. Soc Networks. 1995;17:299–318. doi: 10.1016/0378-8733(95)00268-S. [DOI] [Google Scholar]
- 6.Morris M, Kretzschmar M. Concurrent partnerships and the spread of HIV. AIDS. 1997;11:641–648. doi: 10.1097/00002030-199705000-00012. [DOI] [PubMed] [Google Scholar]
- 7.Kretzschmar M, Morris M. Measures of concurrency in networks and the spread of infectious disease. Math Biosci. 1996;133:165–195. doi: 10.1016/0025-5564(95)00093-3. [DOI] [PubMed] [Google Scholar]
- 8.Chick S, Adams A, Koopman J. Analysis and simulation of a stochastic, discrete-individual model of STD transmission with partnership concurrency. Math Biosci. 2000;166:45–68. doi: 10.1016/S0025-5564(00)00028-6. [DOI] [PubMed] [Google Scholar]
- 9.Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge, England: Cambridge University Press; 1994. [Google Scholar]
- 10.Ghani A, Garnett G. Measuring sexual partner networks for STD transmission. J R Stat Soc A. 1998;161:227–238. doi: 10.1111/1467-985X.00101. [DOI] [Google Scholar]
- 11.Jacquez J, Koopman J, Simon C, Sattenspiel L, Perry T. Modeling and the analysis of HIV transmission: the effect of contact patterns. Math Biosci. 1988;92:119–199. doi: 10.1016/0025-5564(88)90031-4. [DOI] [Google Scholar]
- 12.Watts D. Small Worlds: the Dynamics of Networks Between Order and Randomness. Princeton, NJ: Princeton University Press; 1999. [Google Scholar]
- 13.Garnett G, Anderson R. Balancing sexual partnerships in an age and activity stratified model of HIV transmission in heterosexual populations. IMA J Math Appl Med Biol. 1994;11:161–192. doi: 10.1093/imammb/11.3.161. [DOI] [PubMed] [Google Scholar]
- 14.Welch G, Chick S, Koopman J. Effect of concurrent partnerships and sex-act rate on gonorrhea prevalence. Simulation. 1998;71(4):242–249. doi: 10.1177/003754979807100404. [DOI] [Google Scholar]
- 15.Gupta S, Anders R, May R. Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS. 1989;3:807–817. doi: 10.1097/00002030-198912000-00005. [DOI] [PubMed] [Google Scholar]
- 16.Aral S, Hughes J, Stoner B, et al. Sexual mixing patterns in the spread of gonococcal and chlamydial infections. Am J Public Health. 1999;89(6):825–833. doi: 10.2105/AJPH.89.6.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kretzschmar M, Dietz K. The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math Biosci. 1998;148(1):83–113. doi: 10.1016/S0025-5564(97)10008-6. [DOI] [PubMed] [Google Scholar]
- 18.Adams A, Barth-Jones D, Chick S, Koopman J. Simulations to evaluate HIV vaccine trial designs. Simulation. 1998;71(4):228–241. doi: 10.1177/003754979807100403. [DOI] [Google Scholar]
- 19.Koopman J, Lynch J. Individual causal models and population system models in epidemiology. Am J Public Health. 1999;89:630–632. doi: 10.2105/AJPH.89.8.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Rothenberg R, Potterat J, Woodhouse D, Darrow W, Muth S, Klovdahl A. Choosing a centrality measure: epidemiologic correlates in the Colorado Springs study of social networks. Soc Networks. 1995;17:273–297. doi: 10.1016/0378-8733(95)00267-R. [DOI] [Google Scholar]
- 21.Altman M. Reinterpreting network measures for models of disease transmission. Soc Networks. 1993;15:1–17. doi: 10.1016/0378-8733(93)90019-H. [DOI] [PubMed] [Google Scholar]
- 22.Woodhouse D, Rothenberg R, Potterat J. Mapping a social network of heterosexuals at high risk for human immunodeficiency virus infection. AIDS. 1994;8:1331–1336. doi: 10.1097/00002030-199409000-00018. [DOI] [PubMed] [Google Scholar]
- 23.Auerbach D, Darrow W, Jaffe H, Curran J. Cluster cases of the acquired immune deficiency syndrome: patients linked by sexual contact. Am J Med. 1984;76:487–492. doi: 10.1016/0002-9343(84)90668-5. [DOI] [PubMed] [Google Scholar]
- 24.Poulin R, Boily M, Mâsse B. Dynamical systems to define centrality in social networks. Soc Networks. 2000;22(3):187–220. doi: 10.1016/S0378-8733(00)00020-4. [DOI] [Google Scholar]
- 25.Ghani A, Garnett G. Risk of acquiring and transmitting sexually transmitted diseases in sexual partner networks. Sex Transm Dis. 2000;27(10):579–587. doi: 10.1097/00007435-200011000-00006. [DOI] [PubMed] [Google Scholar]
- 26.Aral S. Sexual mixing patterns as determinants of STD rates: paradigm shift in the behavioral epidemiology of STDs made visible. Sex Transm Dis. 1999;26(5):262–264. doi: 10.1097/00007435-199905000-00004. [DOI] [PubMed] [Google Scholar]
- 27.Boily M, Poulin R, Masse B. Some methodological issues in the study of sexual networks: from model to data to model. Sex Transm Dis. 2000;27(10):558–571. doi: 10.1097/00007435-200011000-00004. [DOI] [PubMed] [Google Scholar]
- 28.Ghani A, Donnelly C, Garnett G. Sampling biases and missing data in explorations of sexual partner networks for the spread of sexually transmitted diseases. Stat Med. 1998;17:2079–2097. doi: 10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- 29.Garnett G, Hughes J, Anderson R, et al. Sexual mixing patterns of patients attending STD clinics. Sex Transm Dis. 1996;23:248–257. doi: 10.1097/00007435-199605000-00015. [DOI] [PubMed] [Google Scholar]
- 30.Holmes KK, Johnson DW, Trostle HJ. An estimate of the risk of men acquiring gonorrhea by sexual contact with infected females. Am J Epidemiol. 1970;91(2):170–174. doi: 10.1093/oxfordjournals.aje.a121125. [DOI] [PubMed] [Google Scholar]
- 31.Jungnickel D. Graphs, Networks and Algorithms. Berlin, Germany: Springer Verlag; 1999. [Google Scholar]
- 32.Riolo C. Personal web page. Available at: http://www-personal.umich.edu/∼criolo/
- 33.Koopman JS, Chick SE, Riolo CS, Adams AL, Wilson Ml, Becker MP. Modeling contact networks and infection transmission in geographic and social space using GERMS. Sex Transm Dis. 2000;27(10):617–626. doi: 10.1097/00007435-200011000-00010. [DOI] [PubMed] [Google Scholar]