Skip to main content
Age logoLink to Age
. 1997 Jan;20(1):45–56. doi: 10.1007/s11357-997-0004-2

Beyond the rodent model: Calorie restriction in rhesus monkeys

Mark A Lane 1,, Donald K Ingram 1, George S Roth 1
PMCID: PMC3456082  PMID: 23604290

Abstract

Lifespan extension and reduction of age-related disease by calorie restriction (CR) are among the most consistent findings in gerontological research. The well known effects of CR have been demonstrated many times in rodents and other short-lived species. However, effects of CR on aging in longer-lived species, more closely related to humans, were unknown until recently. Studies of CR and aging using nonhuman primates (rhesus monkeys) were begun several years ago at the National Institute on Aging, the University of Wisconsin-Madison, and the University of Maryland. These studies are beginning to yield useful data regarding the effects of this nutritional intervention in primates. Several studies from these ongoing investigations have shown that rhesus monkeys on CR exhibit physiological responses to CR that parallel findings in rodents. In addition, several potential biomarkers of aging are being evaluated and preliminary findings suggest the possibility that CR in rhesus monkeys could slow the rate of aging and reduce age-related disease, specifically diabetes and cardiovascular disease. It will be several years before conclusive proof that CR slows aging and extends life span in primates is established, however, results from these exciting studies suggest the possibility that the anti-aging effects of CR reported in rodents also occur in longer-lived species such as nonhuman primates, strenghtening the possibility that this nutritional intervention will also prove beneficial in longer-lived species, including humans.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

References

  • 1.Weindruch R., Walford R. The retardation of aging and disease by dietary restriction. Springfield, IL: Charles C. Thomas; 1988. [Google Scholar]
  • 2.Yu B.P. Modulation of aging processes by dietary restriction. Boca Raton: CRC Press; 1994. [Google Scholar]
  • 3.McCay C.M., Crowell M.F., Maynard L.A. The effect of retarded growth upon the length of the lifespan and upon ultimate body size. J. Nutr. 1935;10:63–79. [PubMed] [Google Scholar]
  • 4.Ingram D.K., Cutler R.G., Weindruch R., Renquist D.M., Knapka J.J., April M., Belcher C.T., Clark M.A., Hatcherson C.D., Marriott B.M., Roth G.S. Dietary restriction and aging: the initiation of a primate study. J. Gerontol. 1990;45:B148–B163. doi: 10.1093/geronj/45.5.b148. [DOI] [PubMed] [Google Scholar]
  • 5.Kemnitz J.W., Weindruch R., Roecker E.B., Crawford K., Kaufman P.L., Ershler W.B. Dietary restriction of adult male rhesus monkeys: Design, methodology and preliminary findings from the first year of study. J. Gerontol. 1993;48:1. doi: 10.1093/geronj/48.1.b17. [DOI] [PubMed] [Google Scholar]
  • 6.Bodkin N.L., Ortmeyer H.K., Hansen B.C. Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance. J. Gerontol. Biol. Sci. 1995;50A:3. doi: 10.1093/gerona/50a.3.b142. [DOI] [PubMed] [Google Scholar]
  • 7.Lane M.A., Reznick A.Z., Tilmont E.M., Lanir A., Ball S.S., Read V., Ingram D.K., Cutler R.G., Roth G.S. Aging and food restriction alters some indices of bone metabolism in male rhesus monkeys (Macacamulatta) J. Nutr. 1995;125:1600–1610. doi: 10.1093/jn/125.6.1600. [DOI] [PubMed] [Google Scholar]
  • 8.Hansen B.C., Bodkin N.L. Heterogeneity of insulin responses: phases in the continuum leading to non-insulin-dependent diabetes mellitus. Diabetologia. 1986;29:713–719. doi: 10.1007/BF00870281. [DOI] [PubMed] [Google Scholar]
  • 9.Nutrient requirements of laboratory animals. Washington, DC.: National Academy of Sciences; 1978. [Google Scholar]
  • 10.Kemnitz J.W., Roecker E.B., Weindruch R., Olson D.F., Baum S.T., Bergman R.N. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am. J. Physiol. 1994;266:E540–E547. doi: 10.1152/ajpendo.1994.266.4.E540. [DOI] [PubMed] [Google Scholar]
  • 11.Lane M.A., Ball S.S., Ingram D.K., Cutler R.G., Engel J., Read V., Roth G.S. Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am. J. Physiol. 1995;268:31. doi: 10.1152/ajpendo.1995.268.5.E941. [DOI] [PubMed] [Google Scholar]
  • 12.Lane M.A., Baer D.J., Tilmont E.M., Rumpler W.V., Ingrain D.K., Roth G.S., Cutler R.G. Energy balance in rhesus monkeys subjected to long-term dietary restriction. J. Gerontol. 1995;50A:B295–B302. doi: 10.1093/gerona/50a.5.b295. [DOI] [PubMed] [Google Scholar]
  • 13.Lane M.A., Ingram D.K., Barnard D.E., Knapka J.J., Cutler R.G., Roth G.S. Dietary restriction in nonhuman primates; progress report on the NIA study. Annals New York Acad. of Sci. 1992;673:36–45. doi: 10.1111/j.1749-6632.1992.tb27434.x. [DOI] [PubMed] [Google Scholar]
  • 14.Weindruch R., Marriott B.M., Conway J., Knapka J.J., Lane M.A., Cutler R.G., Roth G.S., Ingram D.K. Measures of body size and growth in rhesus and squirrel monkeys subjected to long-term dietary restriction. Am. J. Primatol. 1995;35:207–228. doi: 10.1002/ajp.1350350304. [DOI] [PubMed] [Google Scholar]
  • 15.Hansen B.C., Bodkin N.L. Primary prevention of diabetes mellitus by prevention of obesity in monkeys. Diabetes. 1993;42:1809–1814. doi: 10.2337/diab.42.12.1809. [DOI] [PubMed] [Google Scholar]
  • 16.Ramsey J.J., Roecker E.B., Weindruch R., Baum S.T., Kemnitz J.W. Thermogenesis of adult male rhesus monkeys: results through 66 months of dietary restriction. FASEB J. 1996;10:A726. [Google Scholar]
  • 17.Tilmont E.M., Roth G.S., Ingram D.K., Lane M.A. Calorie restriction reduces body weight, body fat, and lean mass in rhesus monkeys. Gerontology Society of America. 1996;36:1. [Google Scholar]
  • 18.Merry B.J., Holehan A.M. Serum profiles of LH, FSH, testosterone and 5-alpha-DHT from 21 to 1000 days of age in ad libitum fed and dietary restricted rats. Exp. Gerontol. Biol. Sci. 1985;16:431–444. doi: 10.1016/0531-5565(81)90025-5. [DOI] [PubMed] [Google Scholar]
  • 19.Pierpaoli W. Changes of hormonal status in young mice by restricted calorie diet. Relation to life span extention. Preliminary results. Experientia. 1977;33:1612–1614. doi: 10.1007/BF01934028. [DOI] [PubMed] [Google Scholar]
  • 20.Kalu D.N., Hardin R.R., Cockerham R., Yu B.P. Aging and dietary modulation of rat skeleton and parathyroid hormone. Endocrinology. 1984;115:1239–1247. doi: 10.1210/endo-115-4-1239. [DOI] [PubMed] [Google Scholar]
  • 21.Kalu D.N., Hardin R.R., Cockerham R., Norlin B.K., Egan J.W. Lifelong food restriction prevents senile osteoporosis and hyperparathyroidism in F344 rats. Mech. Ageing Dev. 1984;26:103–112. doi: 10.1016/0047-6374(84)90169-6. [DOI] [PubMed] [Google Scholar]
  • 22.Roth G.S., Blackman M.R., Ingram D.K., Lane M.A., Ball S.S., Cutler R.G. Age related changes in androgen levels of rhesus monkeys subjected to diet restriction. Endocrine Journal. 1993;1:227–234. [Google Scholar]
  • 23.Masoro E.J., McCarter R.J.M., Katz M.S., McMahan C.A. Dietary restriction alters characteristics of glucose fuel use. J. GerontoL Biol. Sci. 1992;47:B202–B208. doi: 10.1093/geronj/47.6.b202. [DOI] [PubMed] [Google Scholar]
  • 24.Kristal B.S., Yu B.P. Aging and its modulation by dietary restriction. In: Yu B.P., editor. Modulation of aging processes by dietary restriction. Boca Raton: CRC Press; 1994. pp. 1–35. [Google Scholar]
  • 25.Pearl R. The rate of living. New York: Alfred Knopf; 1928. p. 185. [Google Scholar]
  • 26.Sacher G.A. The handbook of the biology of aging. New York: Van Nostrand Reinhold; 1977. Life span table modification and life prolongation. [Google Scholar]
  • 27.Harman D. The aging process. Proc. Natl. Acad. Sci. 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.McCarter R.J., Palmer J. Energy metabolism and aging: a lifelong study in Fischer 344 rats. Am. J. Physiol. 1992;263:E448. doi: 10.1152/ajpendo.1992.263.3.E448. [DOI] [PubMed] [Google Scholar]
  • 29.McCarter R.J., McGee J.R. Transient reduction of metabolic rate by food restriction. AM. J. Physiol. 1989;257:E175–E179. doi: 10.1152/ajpendo.1989.257.2.E175. [DOI] [PubMed] [Google Scholar]
  • 30.Gonzalez-Pacheco D.M., Buss W.C., Koehler K.M., Woodside W.F., Alpert S.S. Energy restriction reduces metabolic rate in adult male Fischer-344 rats. J. Nutr. 1993;123:90–97. doi: 10.1093/jn/123.1.90. [DOI] [PubMed] [Google Scholar]
  • 31.Lynn W.S., Wallwork J.C. Does food restriction retard aging by reducing metabolic rate? J. Nutr. 1992;122:1917–1918. doi: 10.1093/jn/122.9.1917. [DOI] [PubMed] [Google Scholar]
  • 32.McCarter R.J.M. Energy utilization. In: Masoro E. J., editor. Handbook of Physiology, Section 11: Aging. New York: Oxford University Press; 1995. pp. 95–118. [Google Scholar]
  • 33.Weindruch R.H., Kristie J.A., Cheney K.E., Walford R.L. Influence of controlled dietary restriction on immunologic function and aging. Federation Proc. 1979;38:2007–2016. [PubMed] [Google Scholar]
  • 34.Duffy P.H., Feuers R.J., Hart R.W. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol. Int. 1990;7:291–303. doi: 10.1080/07420529009064635. [DOI] [PubMed] [Google Scholar]
  • 35.Duffy P.H., Feuers R.J., Leakey J.A., Nakamura K.D., Turturro A., Hart R.W. Effect of chronic restriction on the synchronization of various physiological measures in the male Fischer 344 rat. Mech. Ageing Dev. 1989;48:117–133. doi: 10.1016/0047-6374(89)90044-4. [DOI] [PubMed] [Google Scholar]
  • 36.Himms-Hagen J. Food restriction increases torpor and improves brown adipose tissue thermogenesis in ob/ob mice. Am. J. Physiol. 1985;248:E531–E539. doi: 10.1152/ajpendo.1985.248.5.E531. [DOI] [PubMed] [Google Scholar]
  • 37.Nelson W., Halberg F. Meal-timing, circadian rhythms and life span of mice. J. Nutr. 1986;116:2244–2253. doi: 10.1093/jn/116.11.2244. [DOI] [PubMed] [Google Scholar]
  • 38.Duffy P.H., Feuers R., Nakamura K.D., Leakey J., Hart R.W. Effect of chronic caloric restriction on the synchronization of various physiological measures in old female Fischer 344 rats. Chronobiol. Int. 1990;7:113–124. doi: 10.3109/07420529009056963. [DOI] [PubMed] [Google Scholar]
  • 39.Lyman C.P., O’brian R.C., Green G.C., Papafrangos E.D. Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science. 1981;212:668–670. doi: 10.1126/science.7221552. [DOI] [PubMed] [Google Scholar]
  • 40.Saint Gironss H. Ecologie et ethologie des viperes de France. Ann. Sci. Nat. Zool. 1981;14:263–343. [Google Scholar]
  • 41.Lane M.A., Baer D.J., Rumpler W.V., Weindruch R., Ingram D.K., Tilmont E.M., Cutler R.G., Roth G.S. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Nat. Acad. Sci. 1996;93:4159–4164. doi: 10.1073/pnas.93.9.4159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Masoro E.J., Katz M.S., McMahan Evidence for the glycation theory of aging from the food-restricted rodent model. J. Gerontol. Biol. Sci. 1989;44:B20–B22. doi: 10.1093/geronj/44.1.b20. [DOI] [PubMed] [Google Scholar]
  • 43.Kalant N., Steward J., Kaplan R. Effect of diet restriction on glucose metabolism and insulin responsiveness in aging rats. Mech. Ageing Dev. 1988;46:89–104. doi: 10.1016/0047-6374(88)90117-0. [DOI] [PubMed] [Google Scholar]
  • 44.Reaven E.P., Wright C.E., Mouden R., Solomon H., Reaven G.M. Effect of age and diet on insulin secretion and insulin action in the rat. Diabetes. 1983;32:175–179. doi: 10.2337/diab.32.2.175. [DOI] [PubMed] [Google Scholar]
  • 45.Ducimetiere P.E., Eschwege E., Papoz J.L., Richard J.L., Claude J.R., Rosselin G. Plasma concentrations of glucose, insulin and percent glycated hemoglobin are unaltered by food restriction in rhesus and squirrel monkeys. J. Gerontol. Biol. Sci. 1992;47:B9–B12. doi: 10.1093/geronj/47.1.b9. [DOI] [PubMed] [Google Scholar]
  • 46.Ferrari P., Weidmann P. Insulin, insulin sensitivity and hypertension. J. Hypertens. 1990;8:491–500. doi: 10.1097/00004872-199006000-00001. [DOI] [PubMed] [Google Scholar]
  • 47.Stout R. Insulin and arteroma. Diabetes Care. 1990;13:631–654. doi: 10.2337/diacare.13.6.631. [DOI] [PubMed] [Google Scholar]
  • 48.Miller N.E. Associations of hgh-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am. Heart J. 1987;113:589–597. doi: 10.1016/0002-8703(87)90638-7. [DOI] [PubMed] [Google Scholar]
  • 49.Stampfer M.J., Sacks M.F., Salvini S., Willet W.C., Hennekens C.H. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. New Engl. J. Med. 1991;325:373–381. doi: 10.1056/NEJM199108083250601. [DOI] [PubMed] [Google Scholar]
  • 50.Buring J.E., O’Conner J.T., Goldhaber S.Z., Rosner B., Herbert P.N., Blum C.B., Breslow J.L., Hennekens C.H. Decreased HDL2 and HDL3 cholesterol, apo A-I and apo A-II, and increased risk of myocardial infarction. Circulation. 1992;85:22–29. doi: 10.1161/01.cir.85.1.22. [DOI] [PubMed] [Google Scholar]
  • 51.Katzel L.I., Coon P.J., Busby M.J., Gottleib S.O., Krauss R.M., Goldberg A.P. Reduced HDL2 cholesterol subspecies and elevated posthepatic lipase activity in older men with abdominal obesity and asymptomatic mycardial ischemia. Arterioscler. Throm. 1992;12:814–823. doi: 10.1161/01.atv.12.7.814. [DOI] [PubMed] [Google Scholar]
  • 52.Gaziano J.M., Buring J.E., Breslow J.L., Goldhaber S.Z., Rosner B., VanDenburgh M. Moderate alcohol intake, increased levels of high density lipoproteins, and subfractions, and decreased risk of mycardial infarction. New Engl. Med. 1993;329:1829–1834. doi: 10.1056/NEJM199312163292501. [DOI] [PubMed] [Google Scholar]
  • 53.Sweetnam P.M., Bolton C.H., Yarnell W.G., Bainton D., Baker I.A., Elwood P.C., Miller N.E. Associations of HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. Circulation. 1994;90:769–774. doi: 10.1161/01.cir.90.2.769. [DOI] [PubMed] [Google Scholar]
  • 54.Yu B.P., Masoro E.J., McMahan C.A. Nutritional influences on aging of Fischer 344 rats: I. physical, metabolic, and longevity characteristics. J. Gerontol. Biol. Sci. 1985;40:657–670. doi: 10.1093/geronj/40.6.657. [DOI] [PubMed] [Google Scholar]
  • 55.Liepa G.U., Masoro E.J., Bertrand H.A., Yu B.P. Food restriction as a modulator of age-related changes in serum lipids. Am. J. Physiol. 1980;283:E253–E257. doi: 10.1152/ajpendo.1980.238.3.E253. [DOI] [PubMed] [Google Scholar]
  • 56.Choi J.M., Gogo S., Ikeda I., Sugano M. Age-related changes in lipid metabolism. Biochim. Biophys. Acta. 1988;963:237–242. doi: 10.1016/0005-2760(88)90286-x. [DOI] [PubMed] [Google Scholar]
  • 57.Masoro E.J., Compton C., Yu B.P., Bertrand H. Temporal and compositional dietary restrictions modulate age-related changes in serum lipids. J. Nutr. 1983;113:880–892. doi: 10.1093/jn/113.4.880. [DOI] [PubMed] [Google Scholar]
  • 58.Nakamura E., Lane M.A., Roth G.S., Cutler R.C., Ingram D.K. Evaluating measures of hematology and blood chemistry in male rhesus monkeys as biomarkers of aging. Exp. Gerontol. 1994;29:2. doi: 10.1016/0531-5565(94)90048-5. [DOI] [PubMed] [Google Scholar]
  • 59.Sell D.R., Lane M.A., Johnson W.A., Masoro E.J., Mock O.B., Reiser K.M., Fogarty J.F., Cutler R.G., Ingram D.K., Roth G.S., Monnier V.M. Longevity and the genetic determination of collagen glycoxidation kenetics in mammalian senescence. Pro. Natl. Acad. Sci. 1996;93:485–490. doi: 10.1073/pnas.93.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Roth, GS, Kowatch, MA, Hengemihle, J, Ingram, DK, Spangler, EL, Johnson, LK, Lane, MA: Effect of age and caloric restriction on cutaneous wound closure in rats and monkeys. (In Press: J. Gerontol. Biol. Sci.) [DOI] [PubMed]
  • 61.Harrison D.E., Archer J.R. Biomarkers of aging: tissue markers. Future research needs, strategies, directions and priorities. Exp. Gerontol. 1988;23:309–321. doi: 10.1016/0531-5565(88)90034-4. [DOI] [PubMed] [Google Scholar]
  • 62.Reed M.J., Penn P.E., Li Y., Beinbaum R., Vernon R.B., Johnson T.S., Pendergrass W.R., Sage E.H., Abrass I.B., Wolf N.S. Enhanced cell proliferation and biosynthesis mediate improved would repair in refed, caloric-restricted mice. Mech. of Aging and Dev. 1996;89:21–43. doi: 10.1016/0047-6374(96)01737-X. [DOI] [PubMed] [Google Scholar]
  • 63.Pignolo R.J., Masoro E.J., Nichols W.W., Bradt C.I., Cristofalo V.J. Skin fibroblasts from aged Fischer 344 rats undergo similar changes in replicative life span but not immortalization with caloric restriction of donors. Exp. Cell. Res. 1992;201:16–22. doi: 10.1016/0014-4827(92)90343-7. [DOI] [PubMed] [Google Scholar]
  • 64.Williams D.D., Short R., Bowden D.M. Fingernail growth rate as a biomarker of aging in the pigtailed macaque (Macaca nemestrina) Exp. Gerontol. Biol. Sci. 1990;25:423–432. doi: 10.1016/0531-5565(90)90031-V. [DOI] [PubMed] [Google Scholar]
  • 65.Orentreich N., Zimmerman A., Matias J.R. Pratical handbook of human biological age determination. Boca Raton: CRC Press; 1994. pp. 391–396. [Google Scholar]
  • 66.Barrett-Connor E., Khaw K., Yen S.S.C. A prospective study of dehydroepiandrosterone sulfate, mortality and cardiovascular disease. N. Engl. J. Med. 1986;315:1519–1524. doi: 10.1056/NEJM198612113152405. [DOI] [PubMed] [Google Scholar]
  • 67.Sapolsky R.M., Vogelman J.H., Orentreich N., Altmann J. Senescent decline in serum dehydroepiandrosterone sulfate concentrations in a population of wild baboons. J. Gerontol. Biol. Sci. 1993;48:5. doi: 10.1093/geronj/48.5.b196. [DOI] [PubMed] [Google Scholar]
  • 68.Lane, MA, Ingram, DK, Roth, GS. Effect of aging and long-term calorie restriction on DHEA and DHEA sulfate in rhesus monkeys. In Dehydroepiandrosterone (DHEA) and Aging, Annals New York Acad. Sci. Vol 774:319–322. [DOI] [PubMed]
  • 69.Yen T., Allan J., Pearson D., Acton J., Greenberg M. Prevention of obesity in A vy/a mice by dehydroepiandrosterone. Lipids. 1977;12:409–417. doi: 10.1007/BF02533624. [DOI] [PubMed] [Google Scholar]
  • 70.Schwartz A., Pasko L., Whitcomb J. Inhibition of tumor development by dehydroepiandrosterone and related steroids. Toxicol. Path. 1986;14:357–365. doi: 10.1177/019262338601400312. [DOI] [PubMed] [Google Scholar]
  • 71.Schwartz A.G., Pashko L.L. Food restriction inhibits [3H] 7, 12-dimenthylbenz[a]anthracene binding to mouse skin DNA and tetracanoyl-phorbol-13-acetate stimulation of epidermal [3H] thymidine incorporation. Anti-Cancer Res. 1986;6:1279–1282. [PubMed] [Google Scholar]
  • 72.Volk, MJ, Pugh, TD, Kim, M, Frith, CH, Daynes, RA, Ershler, WB, and Weindruch, R,: Dietary restriction from middle age attenuates age-associated lymphoma development and interleukin-6 dysregulation in C57BL/6 mice. Cancer Res., 54: 3054–3061. [PubMed]
  • 73.Ershler W.B., Sun W.H., Binkley N., Gravenstein S., Bolk M.J., Kamoske G., Klopp R.G., Roecker E.B., Daynes R.A., Weindruch R. Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res. 1993;12:225–230. [PubMed] [Google Scholar]
  • 74.Cocchi D., Cattaneo L., Lane M.A., Ingram D.K., Cutler R.G., Roth G.S. Effect of long-term dietary restriction on the somatotrophic axis in adult and aged monkeys. Neuroendocrinol. Lett. 1995;17:181–186. [Google Scholar]
  • 75.Cocchi D., Bianchi S., Moretti R., Raimondi J., Algeri S. Effect of lifelong hypocaloric diet on growth hormone secretion in adult and old male rats. Neuroendrocrinol. Lett. 1991;13:14–47. [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES