Abstract
Pokorný et al. have recently suggested that metabolic processes drivemicrotubules in a cell to vibrate at Megahertz frequencies, but the theorydoes not explicitly consider dissipative effects which will tend to damp outthe vibrations. To examine the effects of viscous damping on the structure,we determine viscous forces and rate of energy loss in a cylinderundergoing longitudinal oscillations in water. A nondimensional expressionis obtained for the viscous drag on the cylinder. When applied to amicrotubule, the results indicate that viscous damping is several orders ofmagnitude too large to allow resonant vibrations.
Keywords: microtubules, radiofrequency signal, relaxation time, vibrations, viscous damping
Full Text
The Full Text of this article is available as a PDF (41.3 KB).
Contributor Information
Kenneth R. Foster, Email: kfoster@seas.upenn.edu
James W. Baish, Email: baish@bucknell.edu
References
- 1.Pokorný J., Jelínek F., Trkal V., Lamprecht I., Hölzel R. Vibrations in Microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Jelínek F., Pokorný J., Šaroch J., Trkal V., Hasšek J., Palán B. Microelectronic Sensors for Measurement of Electromagnetic Fields of Living Cells and Experimental Results. Bioelect. Bioenerg. 1999;48:261–266. doi: 10.1016/s0302-4598(99)00017-3. [DOI] [PubMed] [Google Scholar]
- 3.Currie I.G. Fundamental Mechanics of Fluids. New York: McGraw-Hill; 1974. [Google Scholar]
- 4.Carslaw H.S., Jaeger J.C. Conduction of Heat in Solids. Second Ed. London: Oxford University Press; 1959. [Google Scholar]
- 5.Mitchison T., Kirschner M. Dynamic Instability of Microtubule Growth. Nature. 1984;312:237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
- 6.Pokorný J., Jelínek F., Trkal V. Electric Field Around Microtubules. Bioelectrochem. Bioenerg. 1998;45:239–245. [Google Scholar]
- 7.Russel W.B., Saville D.A., Schowalter W.R. Colloidal Dispersions (Cambridge Monographs on Mechanics and Applied Mathematics) Cambridge: Cambridge University Press; 1992. [Google Scholar]
- 8.Stoylov S.P. Colloid Electro-Optics: Theory, Techniques, Applicatiosn (Colloid Science Series) London: Academic Press; 1991. [Google Scholar]
- 9.Wiggins C.H., Riveline D., Ott A., Goldstein R.E. Trapping and Wiggling: Elastohydrodynamics of Driven Microfilaments. Biophys. J. 1998;74:1043–1060. doi: 10.1016/S0006-3495(98)74029-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Edwards G.S., Davis C.C., Saffer J.D., Swicord M.L. Resonant Microwave Absorption of Selected DNA Molecules. Phys. Rev. Lett. 1984;53:1284–1287. [Google Scholar]
- 11.Grundler W., Keilman F., Putterlik V., Strube D. Resonant-Like Dependence of Yeast Growth Rate on Microwave Frequencies. Br. J. Cancer (Suppl.) 1982;45:206–208. [PMC free article] [PubMed] [Google Scholar]