Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2000 Dec;26(4):255–260. doi: 10.1023/A:1010306216654

Viscous Damping of Vibrations in Microtubules

Kenneth R Foster 1, James W Baish 2
PMCID: PMC3456309  PMID: 23345725

Abstract

Pokorný et al. have recently suggested that metabolic processes drivemicrotubules in a cell to vibrate at Megahertz frequencies, but the theorydoes not explicitly consider dissipative effects which will tend to damp outthe vibrations. To examine the effects of viscous damping on the structure,we determine viscous forces and rate of energy loss in a cylinderundergoing longitudinal oscillations in water. A nondimensional expressionis obtained for the viscous drag on the cylinder. When applied to amicrotubule, the results indicate that viscous damping is several orders ofmagnitude too large to allow resonant vibrations.

Keywords: microtubules, radiofrequency signal, relaxation time, vibrations, viscous damping

Full Text

The Full Text of this article is available as a PDF (41.3 KB).

Contributor Information

Kenneth R. Foster, Email: kfoster@seas.upenn.edu

James W. Baish, Email: baish@bucknell.edu

References

  • 1.Pokorný J., Jelínek F., Trkal V., Lamprecht I., Hölzel R. Vibrations in Microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Jelínek F., Pokorný J., Šaroch J., Trkal V., Hasšek J., Palán B. Microelectronic Sensors for Measurement of Electromagnetic Fields of Living Cells and Experimental Results. Bioelect. Bioenerg. 1999;48:261–266. doi: 10.1016/s0302-4598(99)00017-3. [DOI] [PubMed] [Google Scholar]
  • 3.Currie I.G. Fundamental Mechanics of Fluids. New York: McGraw-Hill; 1974. [Google Scholar]
  • 4.Carslaw H.S., Jaeger J.C. Conduction of Heat in Solids. Second Ed. London: Oxford University Press; 1959. [Google Scholar]
  • 5.Mitchison T., Kirschner M. Dynamic Instability of Microtubule Growth. Nature. 1984;312:237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  • 6.Pokorný J., Jelínek F., Trkal V. Electric Field Around Microtubules. Bioelectrochem. Bioenerg. 1998;45:239–245. [Google Scholar]
  • 7.Russel W.B., Saville D.A., Schowalter W.R. Colloidal Dispersions (Cambridge Monographs on Mechanics and Applied Mathematics) Cambridge: Cambridge University Press; 1992. [Google Scholar]
  • 8.Stoylov S.P. Colloid Electro-Optics: Theory, Techniques, Applicatiosn (Colloid Science Series) London: Academic Press; 1991. [Google Scholar]
  • 9.Wiggins C.H., Riveline D., Ott A., Goldstein R.E. Trapping and Wiggling: Elastohydrodynamics of Driven Microfilaments. Biophys. J. 1998;74:1043–1060. doi: 10.1016/S0006-3495(98)74029-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Edwards G.S., Davis C.C., Saffer J.D., Swicord M.L. Resonant Microwave Absorption of Selected DNA Molecules. Phys. Rev. Lett. 1984;53:1284–1287. [Google Scholar]
  • 11.Grundler W., Keilman F., Putterlik V., Strube D. Resonant-Like Dependence of Yeast Growth Rate on Microwave Frequencies. Br. J. Cancer (Suppl.) 1982;45:206–208. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES