Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2005 Dec;31(3-4):351–363. doi: 10.1007/s10867-005-7286-3

Dynamic Simulation of Active/Inactive Chromatin Domains

Jens Odenheimer 1,, Gregor Kreth 2, Dieter W Heermann 1
PMCID: PMC3456343  PMID: 23345903

Abstract

In the present study a model for the compactification of the 30 nm chromatin fibre into higher order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA–DNA interaction …) can be modeled as an effective attractive potential of specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain could be observed. We analyse how the size of these rosettes depends on the number of attractive segments and on the segment length. It turns out that 8–20 attractive segments per 1 Mbp domain produces rosettes of 300–800 nm in diameter. Furthermore, our results show that the size of the rosettes is relatively insensitive to the segment length.

Key words: chromatin structure, simulation, condensing agents, rosette structure, virtual microscopy, molecular dynamics, modeling

Full Text

The Full Text of this article is available as a PDF (315.3 KB).

References

  1. Schiessel H.The Physics of Chromatin J. Phys.: Cond. Matter 200315699–774. 10.1088/0953-8984/15/19/2032003JPCM...15R.699S [DOI] [PubMed] [Google Scholar]
  2. Wedemann G., Langowski J. Computer Simulation of the 30-Nanometer Chromatin Fiber. Biophys. J. 2002;82:2847–2859. doi: 10.1016/S0006-3495(02)75627-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beard D.A., Schlick T. Computational Modeling Predicts the Structure and Dynamics of Chromatin Fiber. Structure. 2001;9:105–114. doi: 10.1016/s0969-2126(01)00572-x. [DOI] [PubMed] [Google Scholar]
  4. Bednar J., Horowitz R.A., Grigoryev S.A., Carruthers L.M., Hansen J.C., Koster A.J., Woodcock C.L.Nucleosomes, Linker DNA, and Linker Histone Form a Unique Structural Motif that Directs the Higher-Order Folding and Compaction of Chromatin Proc. Natl. Acad. Sci. USA 19989514173–14178. 10.1073/pnas.95.24.141731998PNAS...9514173B [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schiessel H.How Short-Ranged Electrostatics Controls the Chromatin Structure on much Larger Scales Europhys. Lett. 200258140–146. 10.1209/epl/i2002-00616-42002EL.....58..140S [DOI] [Google Scholar]
  6. Schiessel H. DNA Folding: Structural and Mechanical Properties of the Two-Angle Model for chromatin. Biophys. J. 2001;80:1940–1956. doi: 10.1016/S0006-3495(01)76164-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schiessel H. Theory and Computer Modeling of the 30 nm Chromatin Fiber. New Compr. Biochem. 2004;39:397–420. [Google Scholar]
  8. Cremer T., Cremer C. Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells. Nat. Rev. Genet. 2001;2:292–301. doi: 10.1038/35066075. [DOI] [PubMed] [Google Scholar]
  9. Cook P.R. Principles of Nuclear Structure and Function. New York: Wiley; 2001. [Google Scholar]
  10. Sedat J., Manuelidis L. A Direct Approach to the Structure of Eukaryotic Chromosomes. Cold Spring Harb. Symp. Quant. Biol. 1978;42:331–350. doi: 10.1101/sqb.1978.042.01.035. [DOI] [PubMed] [Google Scholar]
  11. Maeshima K., Laemmli U.K. A Two-Step Scaffolding Model for Mitotic Chromosome Assembly. Dev. Cell. 2003;4:467–480. doi: 10.1016/S1534-5807(03)00092-3. [DOI] [PubMed] [Google Scholar]
  12. Cook P.R. A Chromomeric Model for Nuclear and Chromosome Structure. J. Cell Sci. 1995;108:2927–2935. doi: 10.1242/jcs.108.9.2927. [DOI] [PubMed] [Google Scholar]
  13. Manuelidis L.A View of Interphase Chromosomes Science 19902501533–1540.1990Sci...250.1533M [DOI] [PubMed] [Google Scholar]
  14. Li G., Sudlow G., Belmont A.S. Interphase Cell Cycle Dynamics of a Late-Replicating, Heterochromatic Homogeneously Staining Region: Precise Choreography of Condensation/Decondensation and Nuclear Positioning. J. Cell Biol. 1998;140:975–989. doi: 10.1083/jcb.140.5.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Münkel C., Langowski J.Chromosome Structure Predicted by a Polymer Model Phys. Rev. E 1998575888–5896.1998PhRvE..57.5888M [Google Scholar]
  16. Münkel C., Eils R., Dietzel S., Zink D., Mehring C., Wedemann G., Cremer T., Langowski J. Compartmentalization of Interphase Chromosomes Observed in Simulation and Experiment. J. Mol. Biol. 1999;285:1053–1065. doi: 10.1006/jmbi.1998.2361. [DOI] [PubMed] [Google Scholar]
  17. Cremer T., Kreth G., Koester H., Fink R.H.A., Heintzmann R., Cremer M., Solovei I., Zink D., Cremer C. Chromosome Territories, Interchromatin Domain Compartment and Nuclear Matrix: An Integrated View of the Functional Nuclear Architecture. Crit. Rev. Eukaryotic Gene Expr. 2000;12:179–212. [PubMed] [Google Scholar]
  18. Ostashevsky J. A Polymer Model for the Structural Organization of Chromatin Loops and Minibands in Interphase Chromosomes. Mol. Biol. Cell. 1998;9:3031–3040. doi: 10.1091/mbc.9.11.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schöppe G., Heermann D.W.Alternative Off-latice Model with Continuous Backbone Mass for Polymers Phys. Rev. E. 199959636–641.1999PhRvE..59..636S [Google Scholar]
  20. Rippe K. Making Contacts on a Nucleic Acid Polymer. TRENDS Biochem. Sci. 2001;26:733–740. doi: 10.1016/S0968-0004(01)01978-8. [DOI] [PubMed] [Google Scholar]
  21. Matsson L. DNA Replication and Cell Cycle Progression Regulated by Long Range Interaction Between Protein Complexes Bound to DNA. J. Biol. Phys. 2001;27:329–359. doi: 10.1023/A:1014288212898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Girard F., Bello B., Laemmli U.K., Gehring W.J. In Vivo Analysis of Scaffold-Associated Regions in Drosophila: A Synthetic High-Affinity SAR Binding Protein Suppresses Position Effect Variegation. EMBO J. 1998;17:2079–2085. doi: 10.1093/emboj/17.7.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hart C.M., Laemmli U.K. Facilitation of Chromatin Dynamics by SARs. Curr. Opin. Genet. Dev. 1998;8:519–525. doi: 10.1016/S0959-437X(98)80005-1. [DOI] [PubMed] [Google Scholar]
  24. Maison C., Almouzni G. Hp1 and the Dynamics of Chromatin Maintenance. Nat. Rev. Mol. Cell Biol. 2004;5:296–305. doi: 10.1038/nrm1355. [DOI] [PubMed] [Google Scholar]
  25. Ishii K., Laemmli U.K. Structural and Dynamic Functions Establish Chromatin Domains. Mol. Cell. 2003;11:237–248. doi: 10.1016/S1097-2765(03)00010-8. [DOI] [PubMed] [Google Scholar]
  26. Blat Y., Kleckner N. Cohesins Bind to Preferential Sites Along Yeast Chromosome III, with Differential Regulation along Arms Versus the Centric Region. Cell. 1999;98:249–259. doi: 10.1016/S0092-8674(00)81019-3. [DOI] [PubMed] [Google Scholar]
  27. Cherstvy A.G., Kornyshev A.A., Leikin S. Temperature-Dependent DNA Condensation Triggered by Rearrangement of Adsorbed Cations. J. Phys. Chem. B. 2002;106:13362–13369. doi: 10.1021/jp026343w. [DOI] [Google Scholar]
  28. Cherstvy A.G., Kornyshev A.A., Leikin S. Torsional Deformation of Double Helix in Interaction and Aggregation of DNA. J. Phys. Chem. B. 2004;108:6508–6518. doi: 10.1021/jp0380475. [DOI] [PubMed] [Google Scholar]
  29. Halperin A. On the Collapse of Multiblock Copolymers. Macromolecules. 1991;24:1418–1419. [Google Scholar]
  30. Semenov A.N., Joanny J.-F., Khokhlov A.R. Associating Polymers: Equilibrium and Linear Viscoelasticity. Macromolecules. 1995;28:1066–1075. [Google Scholar]
  31. Semenov, A.N., Nyrkova, I.A. and Khokhlov, A.R.: Ionomers: Characterization, Theory and Applications, Chapter Statistics and Dynamic of Ionomer Systems, CRC Press, Boca Raton, FL, 1996, pp. 251–279.
  32. De Gennes P.-G. Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press; 1979. [Google Scholar]
  33. Grosberg A.Y., Khokhlov A.R. Statistical Physics of Macromolecules. New York: AIP Press; 1994. [Google Scholar]
  34. Bornfleth H., Edelmann P., Zink D., Cremer T., Cremer C. Quantitative Motion Analysis of Subchromosomal Foci in Living Cells Using Four-Dimensional Microscopy. Biophys. J. 1999;77:2871–2886. doi: 10.1016/S0006-3495(99)77119-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wolffe A. Chromatin: Structure and Function. 2. San Diego: Academic Press Inc.; 1995. [Google Scholar]
  36. Saitoh Y., Laemmli U.K. Metaphase Chromosome Structure: Bands Arise from a Differential Folding Path of the Highly AT-rich Scaffold. Cell. 1994;76:609–622. doi: 10.1016/0092-8674(94)90502-9. [DOI] [PubMed] [Google Scholar]
  37. Bickmore W.A., Oghene K. Visualizing the Spatial Relationships Between Defined DNA Sequences and the Axial Region of Extracted Metaphase Chromosomes. Cell. 1996;84:95–104. doi: 10.1016/S0092-8674(00)80996-4. [DOI] [PubMed] [Google Scholar]
  38. Yokota H., van den Engh G., Hearst J.E., Sachs R.K., Trask B.J. Evidence for the Organization of Chromatin in Megabase Pair-Sized Loops Arranged Along a Random Walk Path in the Human G0/G1 Interphase Nucleus. J. Cell Biol. 1995;130:1239–1249. doi: 10.1083/jcb.130.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES