Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(14):4586–4590. doi: 10.1073/pnas.81.14.4586

Function of the thalamic reticular complex: the searchlight hypothesis.

F Crick
PMCID: PMC345636  PMID: 6589612

Abstract

It is suggested that in the brain the internal attentional searchlight, proposed by Treisman and others, is controlled by the reticular complex of the thalamus (including the closely related perigeniculate nucleus) and that the expression of the searchlight is the production of rapid bursts of firing in a subset of thalamic neurons. It is also suggested that the conjunctions produced by the attentional searchlight are mediated by rapidly modifiable synapses--here called Malsburg synapses--and especially by rapid bursts acting on them. The activation of Malsburg synapses is envisaged as producing transient cell assemblies, including "vertical" ones that temporarily unite neurons at different levels in the neural hierarchy.

Full text

PDF
4590

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlsén G., Lindström S. Corticofugal projection to perigeniculate neurones in the cat. Acta Physiol Scand. 1983 Jun;118(2):181–184. doi: 10.1111/j.1748-1716.1983.tb07259.x. [DOI] [PubMed] [Google Scholar]
  2. Ahlsén G., Lindström S. Excitation of perigeniculate neurones via axon collaterals of principal cells. Brain Res. 1982 Mar 25;236(2):477–481. doi: 10.1016/0006-8993(82)90730-2. [DOI] [PubMed] [Google Scholar]
  3. Ahlsén G., Lindström S., Lo F. S. Functional distinction of perigeniculate and thalamic reticular neurons in the cat. Exp Brain Res. 1982;46(1):118–126. doi: 10.1007/BF00238105. [DOI] [PubMed] [Google Scholar]
  4. Ahlsén G., Lindström S. Mutual inhibition between perigeniculate neurones. Brain Res. 1982 Mar 25;236(2):482–486. doi: 10.1016/0006-8993(82)90731-4. [DOI] [PubMed] [Google Scholar]
  5. Ahlsén G., Lindström S., Sybirska E. Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat. Brain Res. 1978 Nov 3;156(1):106–109. doi: 10.1016/0006-8993(78)90084-7. [DOI] [PubMed] [Google Scholar]
  6. Bergen J. R., Julesz B. Parallel versus serial processing in rapid pattern discrimination. Nature. 1983 Jun 23;303(5919):696–698. doi: 10.1038/303696a0. [DOI] [PubMed] [Google Scholar]
  7. Bruce C., Desimone R., Gross C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol. 1981 Aug;46(2):369–384. doi: 10.1152/jn.1981.46.2.369. [DOI] [PubMed] [Google Scholar]
  8. Dubin M. W., Cleland B. G. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J Neurophysiol. 1977 Mar;40(2):410–427. doi: 10.1152/jn.1977.40.2.410. [DOI] [PubMed] [Google Scholar]
  9. Edelman G. M., Reeke G. N., Jr Selective networks capable of representative transformations, limited generalizations, and associative memory. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2091–2095. doi: 10.1073/pnas.79.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hale P. T., Sefton A. J., Baur L. A., Cottee L. J. Interrelations of the rat's thalamic reticular and dorsal lateral geniculate nuclei. Exp Brain Res. 1982;45(1-2):217–229. doi: 10.1007/BF00235781. [DOI] [PubMed] [Google Scholar]
  11. Houser C. R., Vaughn J. E., Barber R. P., Roberts E. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 1980 Nov 3;200(2):341–354. doi: 10.1016/0006-8993(80)90925-7. [DOI] [PubMed] [Google Scholar]
  12. Hubel D. H., Wiesel T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):1–59. doi: 10.1098/rspb.1977.0085. [DOI] [PubMed] [Google Scholar]
  13. Ide L. S. The fine structure of the perigeniculate nucleus in the cat. J Comp Neurol. 1982 Oct 1;210(4):317–334. doi: 10.1002/cne.902100402. [DOI] [PubMed] [Google Scholar]
  14. Jahnsen H., Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984 Apr;349:205–226. doi: 10.1113/jphysiol.1984.sp015153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jahnsen H., Llinás R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 1984 Apr;349:227–247. doi: 10.1113/jphysiol.1984.sp015154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones E. G. Some aspects of the organization of the thalamic reticular complex. J Comp Neurol. 1975 Aug 1;162(3):285–308. doi: 10.1002/cne.901620302. [DOI] [PubMed] [Google Scholar]
  17. Julesz B. Spatial nonlinearities in the instantaneous perception of textures with identical power spectra. Philos Trans R Soc Lond B Biol Sci. 1980 Jul 8;290(1038):83–94. doi: 10.1098/rstb.1980.0084. [DOI] [PubMed] [Google Scholar]
  18. Julesz B. Textons, the elements of texture perception, and their interactions. Nature. 1981 Mar 12;290(5802):91–97. doi: 10.1038/290091a0. [DOI] [PubMed] [Google Scholar]
  19. Koch C., Poggio T. A theoretical analysis of electrical properties of spines. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):455–477. doi: 10.1098/rspb.1983.0051. [DOI] [PubMed] [Google Scholar]
  20. Little W. A., Shaw G. L. A statistical theory of short and long term memory. Behav Biol. 1975 Jun;14(2):115–133. doi: 10.1016/s0091-6773(75)90122-4. [DOI] [PubMed] [Google Scholar]
  21. Llinás R., Jahnsen H. Electrophysiology of mammalian thalamic neurones in vitro. Nature. 1982 Jun 3;297(5865):406–408. doi: 10.1038/297406a0. [DOI] [PubMed] [Google Scholar]
  22. Minderhoud J. M. An anatomical study of the efferent connections of the thalamic reticular nucleus. Exp Brain Res. 1971 May 26;112(4):435–446. doi: 10.1007/BF00234497. [DOI] [PubMed] [Google Scholar]
  23. Montero V. M., Guillery R. W., Woolsey C. N. Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res. 1977 Dec 23;138(3):407–421. doi: 10.1016/0006-8993(77)90681-3. [DOI] [PubMed] [Google Scholar]
  24. Montero V. M., Scott G. L. Synaptic terminals in the dorsal lateral geniculate nucleus from neurons of the thalamic reticular nucleus: a light and electron microscope autoradiographic study. Neuroscience. 1981;6(12):2561–2577. doi: 10.1016/0306-4522(81)90102-0. [DOI] [PubMed] [Google Scholar]
  25. Oertel W. H., Graybiel A. M., Mugnaini E., Elde R. P., Schmechel D. E., Kopin I. J. Coexistence of glutamic acid decarboxylase- and somatostatin-like immunoreactivity in neurons of the feline nucleus reticularis thalami. J Neurosci. 1983 Jun;3(6):1322–1332. doi: 10.1523/JNEUROSCI.03-06-01322.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ohara P. T., Lieberman A. R., Hunt S. P., Wu J. Y. Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; immunohistochemical studies by light and electron microscopy. Neuroscience. 1983;8(2):189–211. doi: 10.1016/0306-4522(83)90060-x. [DOI] [PubMed] [Google Scholar]
  27. Ohara P. T., Sefton A. J., Lieberman A. R. Mode of termination of afferents from the thalamic reticular nucleus in the dorsal lateral geniculate nucleus of the rat. Brain Res. 1980 Sep 22;197(2):503–506. doi: 10.1016/0006-8993(80)91136-1. [DOI] [PubMed] [Google Scholar]
  28. Perkel D. H. Functional role of dendritic spines. J Physiol (Paris) 1982;78(8):695–699. [PubMed] [Google Scholar]
  29. Perrett D. I., Rolls E. T., Caan W. Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47(3):329–342. doi: 10.1007/BF00239352. [DOI] [PubMed] [Google Scholar]
  30. Posner M. I., Cohen Y., Rafal R. D. Neural systems control of spatial orienting. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 25;298(1089):187–198. doi: 10.1098/rstb.1982.0081. [DOI] [PubMed] [Google Scholar]
  31. Scheibel M. E., Scheibel A. B. Specialized organizational patterns within the nucleus reticularis thalami of the cat. Exp Neurol. 1972 Feb;34(2):316–322. doi: 10.1016/0014-4886(72)90177-x. [DOI] [PubMed] [Google Scholar]
  32. Scheibel M. E., Scheibel A. B. The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1966 Jan;1(1):43–62. doi: 10.1016/0006-8993(66)90104-1. [DOI] [PubMed] [Google Scholar]
  33. Schlag J., Waszak M. Electrophysiological properties of units of the thalamic reticular complex. Exp Neurol. 1971 Jul;32(1):79–97. doi: 10.1016/0014-4886(71)90167-1. [DOI] [PubMed] [Google Scholar]
  34. Sumitomo I., Nakamura M., Iwama K. Location and function of the so-called interneurons of rat lateral geniculate body. Exp Neurol. 1976 Apr;51(1):110–123. doi: 10.1016/0014-4886(76)90056-x. [DOI] [PubMed] [Google Scholar]
  35. Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
  36. Treisman A., Schmidt H. Illusory conjunctions in the perception of objects. Cogn Psychol. 1982 Jan;14(1):107–141. doi: 10.1016/0010-0285(82)90006-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES